Exhibit 13

Memorandum from Tim Martin, Air Sciences Inc., to Pauline Ruddy, Shell, Updates to Air Quality Impact Analysis—Kulluk Drillship (May 4, 2011)

UPDATES TO AIR QUALITY IMPACT ANALYSIS – KULLUK DRILLSHIP

PREPARED FOR:	Pauline Ruddy, Shell
PREPARED BY:	Tim Martin, Air Sciences Inc.
PROJECT NO.:	180-20-4
DATE:	May 4, 2011

Introduction

On February 28, 2011, Shell Offshore Inc. (Shell) submitted an air quality impact report¹ to Region 10 of the Environmental Protection Agency (EPA) regarding proposed operation of the *Kulluk* Drillship in the Beaufort Sea. Shell's February 28 report describes an impact analysis for the *Kulluk* using the AERMOD model, PVMRM chemistry for NO₂ evaluations, measured meteorological data, and realistic maximum emissions, as well as a 500-meter ambient air boundary, to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS) and Alaska Ambient Air Quality Standards (AAAQS).

This memorandum describes changes/updates made to the February 28, 2011 impact analysis in both the emissions and modeling procedures to respond to comments and suggestions provided by EPA and again demonstrates compliance with the NAAQS/AAAQS. These changes/updates include:

- Added cumulative impacts analysis: EPA has requested that Shell include a cumulative impacts analysis. This analysis is included as Attachment B.
- **Updated emissions inventory:** Shell has determined that a separate OSR quartering vessel is not needed in the associated fleet and it is removed from the source inventory. Other minor changes have been made and the result is a substantial decrease in emissions.
- **Revised approach to pairing modeled impacts and background NO₂ data:** EPA has asked that Shell pair the modeled hourly NO₂ impacts from the *Kulluk* with a seasonally based diurnal NO₂ background profile per recommendations in EPA's March 1, 2011, guidance² on modeling 1-hour NO₂ impacts. This profile is based on three years of BP Pad A monitoring station data to account

¹ Shell Offshore, Inc., Supplement to EPA Outer Continental Shelf (OCS) Operating Permit Application Shell Beaufort Sea, Alaska Exploratory Drilling Program: Conical Drilling Unit Kulluk. Prepared by Air Sciences, Inc. February 28, 2011.

² EPA OAQPS. Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality Standard. From Tyler Fox, Leader – Air Quality Monitoring Group, C439-01, pages 17–21.

for cumulative impacts from shore-based sources on OCS lease blocks located offshore near the Prudhoe Bay area (see Attachment B).

- Changed the source of PM_{2.5} background data and its use to address cumulative impacts: As part of EPA's request for a cumulative impacts analysis, PM_{2.5} background data necessarily must be obtained from a location that includes the effects of existing emission sources in the Prudhoe Bay area. Shell established a PM_{2.5} monitor at Deadhorse, which, at present, is the only monitor that collects PM_{2.5} data in the Prudhoe Bay area. These data, with windblown dust-affected measurements removed, are utilized in the updated impacts analysis.
- **Updated annual average background values:** EPA has asked Shell to utilize a full year's worth of data, rather than data based on drilling season months only, when determining the background concentrations for the annual average NAAQS/AAAQS.
- Updated OCS leases by removing some Prudhoe Bay area leases: Shell has removed 11 OCS lease blocks from permitting consideration in the Prudhoe Bay area and near Foggy Island Bay (east of Prudhoe Bay) to address cumulative impact issues related to shore-based sources. These OCS lease changes affect the village receptor selection for onshore impacts at Deadhorse.
- **Refined approach to modeling SO₂ impacts:** In the February 28 impacts analysis, SO₂ was modeled using a straightforward worst-case approach, which greatly overestimated impacts. Given EPA's request for a cumulative impacts analysis, SO₂ modeling is now updated to utilize an emissions sequence approach (analogous to NO₂ and PM) to more accurately assess significant SO₂ impacts.

In addition, EPA has asked Shell to provide/reference language that addresses lead impacts. This language has been provided to EPA in the February 28 *Kulluk* impact report, Section 3.11. Consistent with the treatment of lead in previous *Kulluk* and *Discoverer* impact analyses, lead emissions from the *Kulluk* are insignificant and are not evaluated in the impact analysis. Note that the allowable emissions of lead from the *Kulluk* project are 0.069 tons per year, which is substantially less than the significant emission rate of 0.6 tons per year.

Updates to Allowable Emission Inventory

The February 28, 2011, emission inventory, specifically Tables 2-1 through 2-6 (except 2-4 [fuel tanks]) and its Attachment A, has been modified in the following ways. The quartering vessel has been removed from the inventory, the crane engine's power was corrected from 293 hp to 293 kw (which is equal to 393 hp), and the ULSD fuel heat content and density were updated. The net effect of the combined changes in the inventory is a substantial decrease in emissions of all regulated pollutants. The Owner-Requested Restriction (ORR) on annual NO_x emissions has been shifted to the Alaska ORL form (Attachment 2 submitted to EPA Region 10 on April 29, 2011) because it does not serve as a restriction on impacts. Updated Tables 2-1 through 2-6 (except 2-4) are provided below, and the complete updated inventory is included in Attachment A.

		NO _X	PM _{2.5}	PM ₁₀	СО	SO_2
Source C	Group by Vessel	lb/day	lb/day	lb/day	lb/day	lb/day
Kulluk						
	Generation	456.1	71.3	71.3	206.3	12.9
	MLC HPUs	887.8	35.5	35.5	47.9	2.7
	Air compressors	710.2	14.8	14.8	42.8	2.7
	Cranes	85.2	3.4	3.4	4.6	0.3
	Heaters & Boilers	22.0	3.6	3.6	5.5	1.5
	Seldom-used units	8.7	0.7	0.7	2.4	2.6E-02
	Emergency Generator	35.6	2.8	2.8	9.6	0.1
	Incinerator	5.0	23.2	27.2	496.8	4.1
Primary	Ice Management					
	Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
	Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	5.5	25.9	30.3	554.4	4.6
Seconda	ry Ice Management / Anchor Handler					
	Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
	Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	5.5	25.9	30.3	554.4	4.6
Resupply	y Ship - transport mode					
	Propulsion & Generation	0.0	0.0	0.0	0.0	0.0
	Seldom-used units	0.0	0.0	0.0	0.0	0.0
Resupply	y Ship - DP mode					
	Propulsion & Generation	1,774.6	73.9	73.9	535.2	6.7
	Seldom-used units	1.3	0.1	0.1	0.4	4.0E-03
OSR ves	sel					
	Propulsion & Generation	1,035.2	43.1	43.1	312.2	3.9
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	4.5	21.0	24.6	450.0	3.8
OSR wo	rk boats					
	Work boats	250.2	20.0	20.0	67.5	0.8
	TOTAL - (lb/day)	9,446	1,014	1,031	5,153	169
	TOTAL - (lb/day) - w/o Egen	9,160	991	1,008	5,076	169

Updated Table 2-1: Daily Maximum Emissions for Each Source Group – MLC Activity

shading represents OR to be demonstrated by documentation of daily fuel consumption shading represents OR to be demonstrated by documentation of weekly fuel consumption

	NO _X	PM _{2.5}	PM ₁₀	СО	SO ₂
Source Group by Vessel	lb/day	lb/day	lb/day	lb/day	lb/day
Kulluk					
Generation	456.1	71.3	71.3	206.3	12.9
MLC HPUs	0.0	0.0	0.0	0.0	0.0
Air compressors	0.0	0.0	0.0	0.0	0.0
Cranes	85.2	3.4	3.4	4.6	0.3
Heaters & Boilers	22.0	3.6	3.6	5.5	1.5
Seldom-used units	8.7	0.7	0.7	2.4	2.6E-02
Emergency Generator	35.6	2.8	2.8	9.6	0.1
Incinerator	5.0	23.2	27.2	496.8	4.1
Primary Ice Management					
Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
Incinerator	5.5	25.9	30.3	554.4	4.6
Secondary Ice Management / Anchor Handler					
Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
Seldom-used units	6.6	0.0	0.0	1.8	2.0E-02
Incinerator	5.5	25.9	30.3	554.4	4.6
Resupply Ship - transport mode					
Propulsion & Generation	0.0	0.0	0.0	0.0	0.0
Seldom-used units	0.0	0.0	0.0	0.0	0.0
Resupply Ship - DP mode	0.0	0.0	0.0	0.0	0.0
Propulsion & Generation	1,774.6	73.9	73.9	535.2	6.7
Seldom-used units	1.3	0.1	0.1	0.4	4.0E-03
OSR vessel					
Propulsion & Generation	1,035.2	43.1	43.1	312.2	3.9
Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
Incinerator	4.5	21.0	24.6	450.0	3.8
OSR work boats	050.0	20.0	20.0	6 7 .5	0.0
Work boats	250.2	20.0	20.0	67.5	0.8
TOTAL - (lb/day) TOTAL - (lb/day) - w/o Egen	7,848	964 041	980 957	5,062	164
IOTAL - (10/uay) - w/o Egen	7,562	941	957	4,985	163

Updated Table 2-2: Daily Maximum Emissions for Each Source Group – Drilling Activity

shading represents OR to be demonstrated by documentation of daily fuel consumption shading represents OR to be demonstrated by documentation of weekly fuel consumption

		NO _X	PM _{2.5}	PM ₁₀	СО	SO ₂
Source C	broup by Vessel	lb/day	lb/day	lb/day	lb/day	lb/day
Kulluk						
	Generation	322.0	50.3	50.3	145.7	9.1
	MLC HPUs	0.0	0.0	0.0	0.0	0.0
	Air compressors	0.0	0.0	0.0	0.0	0.0
	Cranes	142.0	5.7	5.7	7.7	0.4
	Heaters & Boilers	22.0	3.6	3.6	5.5	1.5
	Seldom-used units	8.7	0.7	0.7	2.4	2.6E-02
	Emergency Generator	35.6	2.8	2.8	9.6	0.1
	Incinerator	5.0	23.2	27.2	496.8	4.1
Primary	Ice Management					
	Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
	Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	5.5	25.9	30.3	554.4	4.6
Seconda	ry Ice Management / Anchor Handler					
	Propulsion & Generation	2,032.8	317.6	317.6	919.6	57.7
	Heaters & Boilers	36.6	6.0	6.0	9.1	2.6
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	5.5	25.9	30.3	554.4	4.6
Resupply	/ Ship - transport mode					
11.	Propulsion & Generation	0.0	0.0	0.0	0.0	0.0
	Seldom-used units	0.0	0.0	0.0	0.0	0.0
Resupply	/ Ship - DP mode					
	Propulsion & Generation	1,774.6	73.9	73.9	535.2	6.7
	Seldom-used units	1.3	0.1	0.1	0.4	4.0E-03
OSR ves	sel					
	Propulsion & Generation	1,035.2	43.1	43.1	312.2	3.9
	Seldom-used units	6.6	0.5	0.5	1.8	2.0E-02
	Incinerator	4.5	21.0	24.6	450.0	3.8
OSR wo	rk boats					
5511 10	Work boats	250.2	20.0	20.0	67.5	0.8
	TOTAL - (lb/day)	7,771	945	962	5,004	160
	TOTAL - (lb/day) - w/o Egen	7,485	922	939	4,927	159

Updated Table 2-3: Daily Maximum Emissions for Each Source Group – Cementing and Logging Activity

shading represents OR to be demonstrated by documentation of daily fuel consumption shading represents OR to be demonstrated by documentation of weekly fuel consumption

Updated Table 2-5: Summary of Impact Analysis – Required Owner-Requested Restrictions

Owner-Requested Limit (ORL)	Value
MLC drilling	480 hours per season (20 days)
MLC and well drilling combined	1,632 hours per season (68 days)
All OCS source activities combined	2,880 hours per season (120 days)
Number of resupply/waste removal trips	24 per season
Kulluk incinerator	12 hours per day, 8 a.m. through 8 p.m.
Fuel Sulfur content - Kulluk and Fleet	Purchase ULSD, less than 0.01% during use
All IC engine and heater groups	A set of emission limits (lb/day) for each pollutant,
	highlighted in Tables 2-1, 2-2, and 2-3

	NO _X	PM _{2.5}	PM ₁₀	СО	SO ₂
Source Group by Vessel	tons/year	tons/year	tons/year	tons/year	tons/year
Kulluk					
Generation	23.9	3.7	3.7	10.8	6.8E-01
MLC HPUs	8.9	0.4	0.4	0.5	2.7E-02
Air compressors	7.1	0.1	0.1	0.4	2.7E-02
Cranes	6.6	0.3	0.3	0.4	2.0E-02
Heaters & Boilers	1.3	0.2	0.2	0.3	9.2E-02
Seldom-used units	5.2E-01	4.2E-02	4.2E-02	1.4E-01	1.6E-03
Emergency Generator	7.1E-02	5.7E-03	5.7E-03	1.9E-02	2.2E-04
Incinerator	0.3	1.4	1.6	29.8	0.2
Primary Ice Management					
Propulsion & Generation	46.3	7.2	7.2	21.0	1.3E+00
Heaters & Boilers	0.8	0.1	0.1	0.2	5.8E-02
Seldom-used units	1.5E-01	1.2E-02	1.2E-02	4.1E-02	4.6E-04
Incinerator	0.1	0.6	0.7	12.6	0.1
Secondary Ice Management / Anchor Handler					
Propulsion & Generation	46.3	7.2	7.2	21.0	1.3E+00
Heaters & Boilers	0.8	0.1	0.1	0.2	5.8E-02
Seldom-used units	1.5E-01	1.2E-02	1.2E-02	4.1E-02	4.6E-04
Incinerator	0.1	0.6	0.7	12.6	0.1
Resupply Ship - transport mode					
Propulsion & Generation	10.6	0.4	0.4	3.2	4.0E-02
Seldom-used units	7.9E-02	6.3E-03	6.3E-03	2.1E-02	2.4E-04
Resupply Ship - DP mode					
Propulsion & Generation	21.3	0.9	0.9	6.4	8.1E-02
Seldom-used units	7.9E-02	6.3E-03	6.3E-03	2.1E-02	2.4E-04
OSR vessel					
Propulsion & Generation	37.3	1.6	1.6	11.2	1.4E-01
Seldom-used units	4.0E-01	3.2E-02	3.2E-02	1.1E-01	1.2E-03
Incinerator	0.3	1.3	1.5	27.0	0.2
OSR work boats					
Work boats	15.0	1.2	1.2	4.0	4.5E-02
Total - Annual Allowable	229	28	28	162	5

Updated Table 2-6: Annual Maximum Emissions for Each Source Group

Pairing of Modeled Impacts and Background NO₂ Data

In its March 1, 2011, guidance regarding 1-hour NO₂ modeling issues, the EPA notes that the probabilistic form of the new 1-hour NO₂ standard has implications regarding appropriate methods for combining modeled ambient concentrations with monitored background concentrations for comparison to the NAAQS in a modeling analysis. EPA recommends that the modeled contribution to the ambient impact assessment for the 1-hour NO₂ standard should follow the form of the standard based on the 98th percentile of the annual distribution of daily maximum 1-hour concentrations averaged across the number of years modeled.

Page 19 of the March 1, 2011, guidance allows temporal pairing of modeled and monitored values to be considered on a case-by-case basis, with adequate justification and documentation. In Shell's February 28 impact analysis, Shell combined monitored background and modeled concentrations on an hour-by-hour basis, using hourly monitored background data collected concurrently with the meteorological data period being utilized in the model, and provided justification for its use.

EPA has asked that Shell supplement its background pairing approach by considering EPA's recommendation to incorporate background concentrations in the impact assessment by using multiyear averages of the 98th percentile of the available background concentrations by "season" and hour of day. Consistent with EPA's March 1 memo, the rank associated with the 98th percentile of daily maximum 1-hour values should be consistent with the number of "samples" within the distribution. For example, for a data set with 100 percent annual data capture, there would be 365 days (i.e., samples) with valid data for any given hour. According to 40 CFR 50, Appendix S, the eighth highest ranked value from this data set would represent the 98th percentile value for any hour in the data set. As another example, if a data set only contained 182 days of valid data for a given hour (i.e., 50 percent annual data capture), then the fourth highest ranked value from the data set would represent the 98th percentile value for any hour in the 98th percentile value for that hour.

Following EPA's guidance in 40 CFR 50, Appendix S, which specifies the rank associated with the 98th percentile values based on the annual number of days with valid data, Shell has constructed a diurnal NO₂ background profile that is applied to each day considered in the modeling analysis. As discussed with EPA personnel, Shell is defining "season" here as Shell's proposed drilling season from July through November so that the 98th percentile background values are determined from this five-month period. Then, the hourly data from these diurnal background profiles are added to Shell's modeled NO₂ impacts on an hourly basis to determine a total impact value. Consistent with the form of the new 1-hour NO₂ NAAQS, the maximum daily 1-hour NO₂ values are determined from these total hourly values, and the 98th percentile of these maximum daily 1-hour impacts is compared to the 1-hour NO₂ NAAQS.

To account for onshore cumulative impact issues near Prudhoe Bay, Region 10 has asked that the diurnal background NO₂ profiles be based on 2006, 2007, and 2009 ambient monitoring data measured at BP's Pad A monitoring station in Prudhoe Bay. Table 1 provides the diurnal NO₂ background profiles from Pad A that were utilized for the updated *Kulluk* impact analysis in the Beaufort Sea. More details on the utilization of Pad A data in the context of cumulative impact issues are provided in Attachment B.

	Three-Year Average of		2006: July – Noven	nber		2007: July - Novem	ıber	2009: July – November		
Hour	98th Percentile NO2 Concs. For Use in Modeling ¹ (μg/m ³)	# Samples	High-Nth-High Rank Based on # Samples ²	98th Percentile NO2 Conc. (μg/m³)	# Samples	High-Nth-High Rank Based on # Samples ²	98th Percentile NO ₂ Conc. (μg/m ³)	# Samples	High-Nth-High Rank Based on # Samples ²	98th Percentile NO ₂ Conc. (μg/m ³)
1	40.5	148	3	82.7	153	4	18.8	151	4	19.9
2	47.0	149	3	97.8	153	4	20.7	152	4	22.6
3	29.6	127	3	50.8	132	3	20.7	152	4	17.5
4	50.3	147	3	94.0	153	4	26.3	129	3	30.6
5	51.8	148	3	95.9	153	4	35.7	129	3	23.9
6	65.9	147	3	144.8	153	4	30.1	151	4	22.9
7	33.5	146	3	52.6	153	4	26.3	151	4	21.6
8	37.9	144	3	54.5	153	4	28.2	152	4	30.8
9	54.8	145	3	109.0	150	3	33.8	151	4	21.6
10	49.1	144	3	88.4	149	3	30.1	150	3	28.8
11	45.1	143	3	80.8	149	3	24.4	150	3	29.9
12	52.5	147	3	114.7	150	3	22.6	151	4	20.1
13	42.3	148	3	77.1	150	3	30.1	151	4	19.7
14	39.1	148	3	62.0	151	4	28.2	151	4	27.1
15	45.3	148	3	73.3	151	4	24.4	150	3	38.2
16	33.1	146	3	50.8	152	4	20.7	149	3	27.8
17	36.9	148	3	56.4	152	4	22.6	149	3	31.8
18	35.5	147	3	60.2	153	4	24.4	149	3	21.8
19	33.7	145	3	48.9	153	4	22.6	149	3	29.5
20	51.8	148	3	92.1	153	4	26.3	150	3	36.8
21	47.2	149	3	90.2	153	4	20.7	149	3	30.6
22	40.9	149	3	79.0	153	4	18.8	149	3	24.8
23	48.8	149	3	92.1	153	4	16.9	150	3	37.2
24	35.8	149	3	62.0	153	4	18.8	151	4	26.5

Table 1: Diurnal NO₂ Background Profile Utilized for the Updated Kulluk Impact Analysis

¹Based on ambient monitoring data from BP Pad A from 2006, 2007, and 2009. ²Per 40 CFR 50, Appendix S, Table 1, which prescribes the rank associated with the 98th percentile value based on the number of valid samples in a data set.

Use of Deadhorse PM_{2.5} Background Concentrations in Updated Impact Analysis

As part of EPA's request for a cumulative impacts analysis for the *Kulluk*, EPA has asked that Shell utilize Prudhoe Bay area PM_{2.5} background data in the impact analysis, rather than Badami PM_{2.5} data. Shell established a PM_{2.5} monitor at Deadhorse in conjunction with ConocoPhillips Alaska, Inc. (CPAI), which, at present, is the only monitor that collects PM_{2.5} data in Prudhoe Bay area. These data are now utilized in the updated impact analysis.

Deadhorse Monitoring Station Overview

CPAI and Shell both maintain a number of Prevention of Significant Deterioration (PSD) monitoring sites on the North Slope of Alaska to support a variety of permitting efforts. The CPAI-Shell North Slope PSD PM_{2.5} Monitoring Network is a network of PM_{2.5} monitoring sites operated by AECOM for CPAI and Shell on the North Slope of Alaska. The Deadhorse PM_{2.5} monitoring program was designed to meet the collocated monitoring requirement required under 40 CFR 58, Appendix A for PM_{2.5} monitoring for the assessment of network precision and bias.

The Deadhorse monitor was added to the CPAI-Shell North Slope PSD PM_{2.5} Monitoring Network in October 2009. The Deadhorse station location was chosen as the location that would likely have the highest concentrations in the monitoring network, which is consistent with the requirements for siting the collocated monitor within the network. In other words, the Deadhorse station was intentionally sited to obtain some of the highest PM_{2.5} concentrations on the North Slope.

As shown in Figure 1, the Deadhorse monitor is located in an industrialized area close to a heavily traveled, unpaved road. The land use in and immediately surrounding the Deadhorse monitoring station area is primarily light industrial, which includes gravel lay-down yards for a number of oil field support companies, the Prudhoe Bay/Deadhorse airport, and several oil field production pads. With the exception of the Prudhoe Bay/Deadhorse airport, the immediate area is dominated by exposed and routinely disturbed gravel pads and gravel roadways. There are PM_{2.5} emission sources, including stationary and mobile combustion sources and many fugitive dust sources in both the upwind and downwind directions, including an exposed river bed approximately a mile upwind to the east and northeast. Nearby emission sources include lay-down yards, camps, and manufacturing and maintenance shops for various oil field support companies, oil field well sites, and numerous unpaved roads. These emission sources are in addition to the heavily industrialized areas of Prudhoe Bay to the north of Deadhorse that have some of the largest combustion-based particulate sources on the North Slope. Thus, the application of the Deadhorse PM_{2.5} background concentrations to remote offshore locations is highly conservative.

Figure 1: Aerial Photograph of the Deadhorse PM_{2.5} Monitor and Surrounding Areas

Analysis of PM_{2.5} Measurements Likely Affected by Local Fugitive Dust Sources

The analysis described below follows the same procedures as the windblown dust analyses performed on the Wainwright PM_{2.5} data sets that have been used in support of the permitting of the *Discoverer* drillship in the Chukchi Sea. The Deadhorse station began operation in late 2009 and PM_{2.5} data corresponding to Shell's proposed drilling season months (July through November) are available for 2010. During this time period, 150 valid daily PM_{2.5} samples were collected. Initial examination of these data reveals there are a limited number of extreme data that are inconsistent with the patterns that are seen in the area, suggesting that local sources (i.e., windblown dust) may have influenced the high measured values. These few localized high impact days are not thought to be representative of regional air quality and thus, consistent with the practices followed for the previous permitting of the *Discoverer*, Shell is proposing to remove these data from the background analysis.

The Deadhorse station is exposed to the regional air of the Beaufort Sea and therefore samples would contain PM_{2.5} from the Beaufort regional air. As previously mentioned, Deadhorse also has local sources of particulate matter contributing to the baseline concentrations, which would affect the Deadhorse sampling. The task here is to use the Deadhorse data to define a reasonable 98th percentile 24-hour PM_{2.5} concentration for use in the *Kulluk* impact analysis. In other words, the goal of this analysis is to separate out particulate matter that is clearly from the very localized emission sources, such as windblown dust.

Although it would be appropriate to gather statistics that could correlate with power generation and vehicle, commercial, and residential heating, etc., this analysis of the Deadhorse data focuses on determining whether there is a local wind-blown soil fugitive dust component, and if so, whether it can be eliminated from the data set to provide a data set representative the Beaufort Sea region, including impacts from the other emission sources in the Prudhoe Bay area. Wind-blown soils are known to be caused by dry and exposed soil surfaces in the presence of high winds. The logic is to segregate the days of high winds and lack of precipitation, both of which are generally conducive to surface dust becoming airborne. Because of the high latitude and human activity around Deadhorse, the surfaces all along this area have little vegetation, and without snow cover, are exposed to the winds.

The 150 samples are divided into days on which precipitation occurred (greater than 0.01 inch) and days without precipitation (0.01 inch and less) because precipitation is known to scavenge particulate matter from the atmosphere and to stabilize soil surfaces. These possible effects need to be separated from the dry conditions.

From Table 2, the average and maximum 24-hour concentrations on precipitation days are lower than concentrations measured on non-precipitation days. It is likely that the soil surface would be stabilized on most precipitation days, and wind would not cause wind-blown dust. The effect of wind is incorporated by counting the number of hours with average speeds greater than 10 meters per second, a speed known to be sufficient to initiate wind-blown dust. High-wind days are defined as days where there are four or more hours with average wind speeds greater than 10 meters per second.

Each group of $PM_{2.5}$ concentrations is subdivided into high-wind days and non-high-wind days. On non-precipitation days, the average daily concentrations on high-wind days are more than two times higher than the low-wind days. The maximum daily concentration on the high-winds days (41 µg/m³) is more than two times higher any other daily concentration in the data set.

	# Valid	Daily PM _{2.5} Concentration (μ g/m ³)					
Day Categories	Days	Average	1st-High ⁵	2nd-High ⁵			
Precipitation Days ³							
Non-High-Wind Days ¹	25	1.7	15	3			
High-Wind Days ²	3	2.7	3	3			
Non-Precipitation Days ⁴							
Non-High-Wind Days ¹	105	2.6	20	17			
High-Wind Days ²	17	6.1	41	19			

Table 2: Analysis of PM_{2.5} Measurements Likely Affected by Local Fugitive Dust Sources

¹ Days with less than 4 hours of winds greater than 10 meters/second.

² Days with at least 4 hours of winds greater than 10 meters/second.

³ These days fall within the two-day periods (on that day or on the previous day) where there is total precipitation > 0.01".

⁴ These days fall within the two-day periods (on that day or on the previous day) where there is total precipitation < 0.01".

⁵ For each category (e.g., precipitation day non-high-wind days, precipitation day high-wind days, etc.).

Given the effect of windblown dust on measurements at Deadhorse, Shell has identified two days in particular that are affected by windblown dust and these days are removed from the data set: August 2, 2010 (41 μ g/m³, 10 hours of winds > 10 meters per second), and November 4, 2010 (19 μ g/m³, 19 hours of winds > 10 meters per second). Then, following EPA's guidance in 40 CFR 50, Appendix N, which specifies the rank associated with the 98th percentile values based on the annual number of days with valid data, Shell has determined a 98th percentile 24-hour PM_{2.5} background concentration for use in the updated *Kulluk* impact analysis. Per 40 CFR 50, Appendix N, the third highest value in the data set represents the 98th percentile value from the data set. With the high windblown dust values removed, the 98th percentile of the July through November, 2010 data set is 17 μ g/m³ and this value is used in the updated *Kulluk* impact analysis. Theoretically, this value does not include blowing dust, but this background value is still very conservative when applied to offshore locations since it includes the impacts from local onshore sources such as unpaved roads, maintenance yard activities, large stationary sources, etc.

The listing of the detailed Deadhorse data values, including $PM_{2.5}$ concentrations, daily precipitation data, and wind data is provided in Attachment C.

Pairing of Modeled PM_{2.5} Impacts and Background PM_{2.5} Data

In Shell's February 28 impact analysis, Shell combined monitored background and modeled concentrations on a daily basis, using daily monitored background data collected concurrently with the meteorological data period being utilized in the model, and provided justification for its use. This was possible since there is concurrent Badami background concentration data and meteorological data for both 2009 and 2010. The Deadhorse PM_{2.5} data are only available for 2010. As a result, EPA has asked Shell to pair modeled and monitored background per the recommendations in its March 23, 2010, guidance memo on PM_{2.5} modeling procedures³.

Per EPA guidance, the representative monitored $PM_{2.5}$ design value, rather than the overall maximum monitored background concentration, should be used as a component of the impact analysis. For the 24-hour NAAQS analysis, EPA guidance allows for the use of the 98th percentile background concentration (i.e., the 17 µg/m³ value from Deadhorse discussed above). In addition, EPA recommends that the modeled concentrations to be added to the 98th percentile background concentration be computed based on the highest average of the maximum modeled 24-hour averages across 5 years for National Weather Service meteorological data or the maximum modeled 24-hour average for one year of site-specific meteorological data. According to EPA, the use of the average modeled concentration across the appropriate time period more accurately characterizes the modeled impact from individual years. Shell is considering two years of modeled data, and thus, the modeled 24-hour concentration is calculated based on the average of the highest 24-hour impacts from either 2009 or 2010 on a receptor-by-receptor

³ EPA OAQPS. *Modeling Procedures for Demonstrating Compliance with PM2.5 NAAQS.* From Steven D. Paige, Director – Office of Air Quality Planning and Standards, pages 7–8.

basis. This two-year average of maximum 24-hour $PM_{2.5}$ concentrations from modeling is then added to the 98th percentile $PM_{2.5}$ background concentration (unpaired in time) to determine a total $PM_{2.5}$ impact value for comparison to the NAAQS.

Updated PM_{2.5} modeling results using this unpaired approach are provided below.

Updated Background Concentrations

EPA has asked Shell to utilize a full year's worth of data, rather than data based on drilling season months only, when determining the background concentrations for the annual average NAAQS/AAAQS. In addition, the updated method of pairing hourly NO₂ modeling results with background NO₂ concentrations and the utilization of Deadhorse PM_{2.5} background data affects the background assumptions that were made in the February 28 analysis. The revised background concentrations utilized in this updated analyses are provided in Updated Table 3-6 below.

Pollutant	Averaging Period	Background Concentration (μg/m³)	Data Source
NO ₂	1-hour	Diurnal profile ¹ , See Table 1	Calculated diurnal NO ₂ profile based on the three-year average (2006, 2007, 2009) of the 98th percentile of the hourly values from the BP Pad A monitoring station.
	Annual ⁴	10.7	Highest annual average (2007) at the BP Pad A monitoring station (2006, 2007, 2009).
PM ₁₀ ³	24-hour	55.1	From Shell <i>Discoverer</i> Beaufort Sea PSD Permit Application (Revised September 2009); BPX Prudhoe Bay area (2006, 2007).
PM _{2.5}	24-hour	17.0	98th percentile value from Deadhorse $(7/2010 - 11/2010)$; windblown dust days removed from the data set.
	Annual ⁴	4.8	Deadhorse (1/2010 – 12/2010); first complete year of monitoring data.
$SO_2{}^3$	1-hour	13.0	
	3-hour	11.4	BPX Liberty (7/2007 – 11/2007) for short-term averages, (2/2007 – 1/2008) for the annual
	24-hour	4.2	average.
	Annual ⁴	2.6	
CO ³	1-hour	1,746	PDV L : houter $(7/2007 - 11/2007)$?
	8-hour	862	BPX Liberty (7/2007 – 11/2007) ²

¹ Diurnal profile of hourly NO₂ background is paired with hourly modeled impacts for the 1-hour NO₂ impact analyses.

² This is the same monitoring station utilized for SO₂ and CO background in the Shell *Discoverer* Beaufort Sea PSD Permit (Revised September 2009).

The background value presented is the highest concentration representative of the months of Shell's proposed open-water drilling season (July – November).

³ Short-term (i.e., 1-, 3-, 8-, 24-hour) background concentrations for PM₁₀, SO₂, and CO are conservatively assumed as the maximum values measured.

⁴ Per EPA's request, annual background values are updated here to reflect annual average concentrations rather than 120-day period average concentrations specific to the months of the drilling season.

Removal of OCS Lease Blocks from Permitting Consideration

Shell has removed 11 OCS lease blocks from permitting consideration in the Prudhoe Bay area and near Foggy Island Bay (east of Prudhoe Bay) to address cumulative impact issues related to shore-based sources (see Attachment B).

These lease changes affect the village receptor selection for onshore impacts at Deadhorse. The term "village" is used here in the broad sense to identify locations where people are present in the Prudhoe Bay area, and does not refer to villages as designated under the Alaska Native Claims Settlement Act of 1971.

Figure 2 shows the locations of Shell's updated OCS leases and highlights the leases removed from permitting consideration for the *Kulluk* application. Updated Figure 3-11 shows the locations of Shell's OCS leases relative to the nearest onshore villages. With the consideration of the removed leases, the nearest OCS lease block is now approximately 44 kilometers from Deadhorse, whereas Deadhorse was previously located approximately 32 kilometers from the nearest OCS lease blocks in the February 28 analysis.

Updated Figure 3-11: Map of the Nearest Villages on the Beaufort Coast Relative to the OCS Leases

Gray-shaded lease blocks have been dropped from permitting consideration for the *Kulluk* application. Distances shown are the distances from the revised/updated OCS lease blocks to the nearest onshore villages.

Updated Impact Modeling Results

The modeling for this updated analysis was re-performed by the methods explained in the February 28, 2011, Supplement Report. A summary of the maximum modeled impacts of the *Kulluk* and associated fleet plus background concentrations for comparison to the NAAQS/AAAQS is provided in Updated Table 3-9. These results show that Shell's proposed *Kulluk* Beaufort Sea exploratory drilling program will comply with the NAAQS/AAAQS. Note that all maximum impacts are located on or near the ambient air boundary.

The nearest coastal villages to the OCS lease blocks are Nuiqsut, Deadhorse, and Kaktovik, which are located 37, 44, and 14 kilometers from the nearest OCS lease blocks, respectively (see Updated Figure 3-11). Updated Table 3-11 provides a summary of the modeled impacts from the proposed *Kulluk* project at the nearest coastal village locations and shows that impacts are well below the NAAQS/AAAQS. Shell-only impacts are no higher than two percent of the NAAQS/AAAQS for any pollutant.

Table 3 provides a source contribution analysis for 1-hour NO₂ impacts, the pollutant/averaging time with the highest Shell-only impacts relative to the NAAQS/AAAQS. The results of this analysis indicate that the generator, MLC HPU, and air compressor sources dominate the 1-hour NO₂ impacts.

As mentioned previously, details on the nearby sources/cumulative impacts analysis issues are provided in Attachment B. Based on this analysis, only impacts from the *Kulluk* are explicitly modeled in the full impact analysis for the Beaufort Sea.

Updated Table 3-9: Summary of Maximum Modeled Impacts

Pollutant	Averaging Period	Utilize Emissions Sequence?	Pair Background In Time?	Max. Modeled Impact – Shell Only at or Beyond Ambient Air Boundary $^{\rm 1A,2}$ $(\mu g/m^3)$	Background Concentration (μg/m³)	Max. Total Impact ^{3, 1B,} (µg/m ³)	AAAQS/ NAAQS (μg/m³)	Comply?
NO ₂	1-hour	Yes	Yes – Diurnal	106.3	40.9	147.2	188	Yes
	Annual 1B	Yes	No	3.4	10.7	14.1	100	Yes
PM _{2.5}	24-hour	Yes	No	16.9	17.0	33.9	35	Yes
	Annual ^{1B}	Yes	No	0.8	4.8	5.6	15	Yes
PM10	24-hour	Yes	No	20.5	55.1	75.6	150	Yes
SO ₂	1-hour	Yes	No	14.0	13.0	27.0	196	Yes
	3-hour	Yes	No	8.9	11.4	20.3	1,300	Yes
	24-hour	Yes	No	2.8	4.2	7.0	365	Yes
	Annual ^{1B}	Yes	No	0.1	2.6	2.7	80	Yes
СО	1-hour	No	No	1,268	1,746	3,014	40,000	Yes
	8-hour	No	No	712	862	1,574	10,000	Yes
NH ₃	8-hour	No	No	6.6		6.6	2,100	Yes

^{1A} Impact analyses for NO₂, PM_{2.5}, PM₁₀, and SO₂ span all 5 months of potential drilling activity (July through November) using two 120-day emissions sequences to eliminate bias in the meteorological data. The highest impacts from the two 120-day sequences are shown.

^{1B}For the total annual impact values, the total 120-day period average impacts (Shell-only impact plus background) for NO₂, PM_{2.5}, and SO₂ are adjusted to annual impacts by taking into account periods of the year when Shell operations don't occur (i.e., multiply the total 120-day average impacts by 0.329 [120 drilling days out of 365 days in a year]).

² Impact analyses for CO and NH₃ span all 5 months (153 days) of potential drilling activity (July through November) using a single, worst-case configured model run (153 days) without consideration of emissions sequencing or intermittent source operations.

³ Total modeled impact is the sum of the highest modeled impact (from either 2009 or 2010) plus background concentrations.

For NO₂, the 98th percentile values consistent with the form of the NAAQS are presented.

For PM2.5, the highest two-year average modeled max. 24-hour values at any receptor are presented. For all other pollutants, the max. modeled impacts are presented.

			lax. Total Impac			Shell-Only Contribution to				Highest Shell-Only Impacts,
	Averaging	Backgro	und Included (μ	g/m^{3}) ^{3, 1B}	Max. T	otal Impacts (µg	$(m^3)^{1A,2}$	NAAQS		Percentage of
Pollutant	Period	Nuiqsut	Deadhorse	Kaktovik	Nuiqsut	Deadhorse	Kaktovik	(µg/m³)	Comply?	NAAQS/AAAQS (%)
NO ₂	1-hour	66.0	65.9	66.2	0.04	0.02	0.3	188	Yes	0.2%
	Annual ^{1B}	10.7	10.7	10.8	0.03	0.02	0.1	100	Yes	0.1%
PM _{2.5}	24-hour	17.2	17.1	17.5	0.2	0.1	0.5	35	Yes	1%
	Annual ^{1B}	4.8	4.8	4.8	0.004	0.004	0.01	15	Yes	0.1%
PM ₁₀	24-hour	55.4	55.3	55.6	0.3	0.2	0.5	150	Yes	0.3%
SO ₂	1-hour	13.4	13.5	13.7	0.4	0.5	0.7	196	Yes	0.4%
	3-hour	11.6	11.6	11.7	0.2	0.2	0.3	1,300	Yes	0.03%
	24-hour	4.2	4.2	4.3	0.05	0.03	0.1	365	Yes	0.02%
	Annual ^{1B}	2.6	2.6	2.6	0.001	0.001	0.002	80	Yes	0.002%
СО	1-hour	1,946	1,928	2,079	200.5	181.6	333.0	40,000	Yes	1%
	8-hour	979	967	1,042	116.7	105.3	180.3	10,000	Yes	2%
NH ₃	8-hour	1.6	1.5	2.6	1.6	1.5	2.6	2,100	Yes	0.1%

Updated Table 3-11: Summary of Maximum Impacts at the Nearest Villages on the Beaufort Coast

^{1A} Impact analyses for NO₂, PM_{2.5}, PM₁₀, and SO₂ span all 5 months of potential drilling activity (July through November) using two 120-day emissions sequences to eliminate bias in the meteorological data. The highest impacts from the two 120-day sequences are shown:
Sequences 18 = July 1 through October 28. Sequences 18 = August 2 through November 20.

Sequence "A" = July 1 through October 28, Sequence "B" = August 3 through November 30.

^{1B} For the total annual impact values, the total 120-day period average impacts (Shell-only impact plus background) for NO₂ PM_{2.5} and SO₂ are adjusted to annual impacts by taking into periods of the year when Shell operations don't occur (i.e., multiply the total 120-day average impacts by 0.329 [120 drilling days out of 365 days in a year]).

² Impact analyses for CO and NH₃ span all 5 months (153 days) of potential drilling activity (July through November) using a single, worst-case configured model run (153 days) without consideration of emissions sequencing or intermittent source operations.

³ Total modeled impact is the sum of the highest modeled impact (from either 2009 or 2010) plus background concentrations. For NO₂, the 98th percentile values consistent with the form of the NAAQS are presented.

For $PM_{2.5}$, the highest two-year average modeled max. 24-hour values at any receptor are presented.

For all other pollutants, the max. modeled impacts are presented.

		1-Hour NO ₂ Impact	Contribution
Source	Model ID	$(\mu g/m^{3})$	(%)
Kulluk			
Generation	MAINENGS	21.1	20%
MLC HPU	MLCHPU_A	18.9	18%
MLC HPU	MLCHPU_B	18.9	18%
Air Compressor (port)	AIRCMP_A	23.7	22%
Air Compressor (starboard)	AIRCMP_B	12.7	12%
Crane	CRANE_A	1.2	1%
Crane	CRANE_B	0.8	1%
Crane	CRANE_C	0.8	1%
Heaters and Boilers	HEATBOIL	1.0	1%
Incinerator	INCIN_K	0	0%
Seldom-Used Units (typical operations)	SELDOML	0.4	0.3%
Seldom-Used Units (emerg. gen. exercising)	SELDOMH	0	0%
Associated Fleet			
Resupply Ship (DP Mode Emissions)	RESUP_DP	0	0%
Ice Management/Anchor Handler	ICEMGMT2	4.5	4%
Main OSR Ship	OSR_MAIN	1.6	2%
OSR Work Boats	OSR_WORK	0.7	1%
	Total >	106.3	100%

Table 3: Source Contribution Analysis for 1-hour NO₂

¹ Maximum impact receptor (98th percentile) is located near the ambient air boundary, 500 meters from the *Kulluk* (X = -530.1 m, Y = 102.9 m); impact occurs in Sequence B on 11/04/2009, hour 22.

ATTACHMENT A Source Usage and Allowable Emissions

PROJECT TITLE:	BY:				
Shell - Exploration Drilling		S. Pryor			
PROJECT NO:	PAGE:	OF:	SHEET:		
180-20-6	1	1	1		
SUBJECT:	DATE:				
Kulluk / Beaufort Pmt App	А	pril 28, 20	11		

ENGINEERING CALCULATIONS

SUMMARY - ALLOWABLE EMISSIONS

	NOX	PM _{2.5}	PM_{10}	СО	SO_2	VOC	Lead	GHG
	tons/year	tons/year	tons/year	tons/year	tons/year	tons/year	tons/year	tons/year
Engines	227.8	23.7	23.7	80.1	3.9	12.9	1.0E-02	59,870
Incinerators	0.8	3.8	4.5	82.1	0.7	27.4	5.8E-02	539
De-gassing								4.2
Total	228.6	27.5	28.2	162.1	4.6	40.3	6.9E-02	60,413
PSD trigger	250	250	250	250	250	250	250	100,000
Compare	Below	Below	Below	Below	Below	Below	Below	Below

	HAP	CH ₂ O	H_2SO_4	Fluorides ^a	H ₂ S ^b	TRS ^b	RSC ^b
	tons/year	tons/year	tons/year	tons/year	tons/year	tons/year	tons/year
Engines	5.1E-01	0.2	0.3	-	2.08E-02	2.08E-02	2.08E-02
Incinerators	6.9E-02	0.0	0.3	-	3.64E-01	3.64E-01	3.64E-01
Total	0.6	0.2	0.6	-	0.4	0.4	0.4
PSD trigger	250	250	250	250	250	250	250
Compare	Below	Below	Below	Below	Below	Below	Below

^a Fluoride is not a listed and quantified trace pollutant from diesel combustion as provided by AP42, so it is assumed to be an extremely small constituent. Furthermore, fluoride is a reduced form of fluorine and diesel combustion is an oxidizing process. Therefore, it is unlikely that it would exist as a combustion bi-product and should be a negligible emission from the project. ^b H_2S also represents upper limit of total reduced sulfur and reduced sulfur compound emissions

blue values are input, black values are calculated or linked

A.	Air S	ciences Inc.	PROJECT TITLE: Shell - Exploration Drilling	BY: S. Pryor
SCIENCES INC.			PROJECT NO:	PAGE: OF: SHEET
SCIENCES INC.	ENCINEEDI	NG CALCULATIONS	180-20-6 SUBJECT:	1 16 2 DATE:
TALO CONTRACTOR	ENGINEERI	alcolariono	Kulluk / Beaufort Pmt App	April 28, 2011
ALLOWABLE EMISSIONS	shading represe	ents owner restriction (OR) to be demor	istrated by documentation of each event	
		ents OR to be demonstrated by document		
		ents OR to be demonstrated by document	ntation of weekly fuel consumption	
ANTICIPATED KULLUK OPERATING M Kulluk & Associated Fleet	IAXIMUMS			
Expected Operating Maximums	Limit	How Defined	How documented	
MLC Drilling Activity Well Drilling Activity	480 hrs/activity 1.152 hrs/activity	20 days/activity 48 days/activity		
Cementing/Logging Activity	1,152 his/activity	52 days/activity		
Season maximum drilling duration as	2.880 hrs/season	120 days/season		
an OCS source (secure and stable for				
commencement of exploratory activity): Ice mgmt vessel use within 25 miles	38%			
OSR vessel annual fuel limit	60% of daily maxim	num - annualized		
MLC Activity				
Generators (three units combined) combined	85% capacity	System Limitation		<u> </u>
Crane (three units combined) maximum Crane (three units combined) maximum	40% capacity 30% of time (day)	System Limitation Shell engineering estimate		
crane (unce units contonieu) maxinfum	50% of time (day)	Shell engineering estimate		
Well Drilling Activity				
Generators (three units combined)	85% capacity	System Limitation		
combined production maximum Crane (three units combined) maximum	40% capacity	System Limitation		
Crane (three units combined) maximum	30% of time (day)	Shell engineering estimate		
Cementing/Logging Activity				
Generators (three units combined) combined	60% capacity	Shell OR		
Crane (three units combined) maximum	40% capacity	System Limitation		
Crane (three units combined) maximum	50% of time (day)	Shell engineering estimate		
All Activities - OR				
Kulluk Incinerator limited to	12 hr/day	Shell OR	manual - recording of start and stop time	
Kulluk emergency generator limited to Sulfur content of all stationary source	2 hr/30-days & h 0.0100% by wt.	shell OR	Kulluk fuel testing	
engines on Kulluk				
Sulfur content of associated fleet Ice Management Fleet Propulsion & Generation	0.0100% by wt. 100% capacity	Shell OR System Limitation	Fleet fuel testing	
Resupply ship in transport limited to	1,200 gal/1-way	Shell OR	Fuel consumption measurement	
Resupply ship in DP mode limited to	4,800 gal/event	Shell OR	Fuel consumption measurement	
Resupply ship resupply events limited to	24 rnd trip/season		Manual tracking	
Resupply ship DP events limited to OSR Vessel p & g aggregate power:	24 hr/day=hr/even 2,600 kW	nt Shell OR	Manual tracking Manufacturer specifications	
OSR Vessel p & g aggregate consumption:	2,800 gal/day	Shell OR	Fuel consumption measurement	
OSR work boats	3,789 gallons/wk.	Shell OR	Fuel consumption measurement	
OSR Boat Options			Conversions	
	Interla / A media Tana		0.7457 kW / hp	
OSR vessel Pt. Oli	ktuk/Arctic Endeavor]	1,000,000 Btu / MMBtu 453.592 g / lb	
Work Boats			2,000 lb / ton	
#1 OSR 34-f	6		24 hr / day	
#2 OSR 34-fu #1 OSR 47-fu	0		168 hr / wk	
	oot 63 gal/hr LL 6 hr/day		2 one-way trips / round trip 32.07 weight S	
	LL 5 day/week		64.06 weight SO2	
А	LL 100% hourly fuel con	sumption	2.00 weight conversion of S to SO2	
			8.34 lb/gal (Density of water)	
Assumptions	208	7.00 lb/aal	Reference	
Diesel Density 0.8	370	7.00 lb/gal	Tesoro Nikiski, Email Royal Harris 4/20/11	
Diesel Engine Thermal Efficiency		7,000 Btu/hp-hr	<600 hp; AP42 Table 3.3-1 Footnote (a) ver. 10/96.	

** seldom-used engines are those running <4 hr/wk.

blue values are input, black values are calculated or linked

ENGINEERING CALCULATIONS

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor PROJECT NO: PAGE: SHEET: OF: 180-20-6 2 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

EMISSION FACTORS AND CONTROL DEVICES

		Co	ntrols			EF Re	ference		
Emission Unit	NOx	PM	со	VOC	NOx	PM	со	VOC	Control
Kulluk									
Generation	Kulluk-SCl	R OxyCat-Lg	OxyCat-Lg	OxyCat-Lg	4	7	7	7	SCR, Oxyca
MLC HPUs	None-Sm	OxyCat-Sm	OxyCat-Sm	OxyCat-Sm	2	8	8	8	OxyCat
Air compressors	None-Lg	OxyCat-Lg	OxyCat-Lg	OxyCat-Lg	1	7	7	7	OxyCat
Cranes	None-Sm	OxyCat-Sm	OxyCat-Sm	OxyCat-Sm	2	8	8	8	OxyCat
Heaters & Boilers	heat&boil	heat&boil	heat&boil	heat&boil	3	3	3	3	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
Emergency Generator	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
Primary Ice Management									
Propulsion & Generation	SCR	OxyCat-Lg	OxyCat-Lg	OxyCat-Lg	5	7	7	7	SCR, Oxyca
Heaters & Boilers	heat&boil	heat&boil	heat&boil	heat&boil	3	3	3	3	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
Secondary Ice Management / Anchor Handler									
Propulsion & Generation	SCR	OxyCat-Lg	OxyCat-Lg	OxyCat-Lg	5	7	7	7	SCR, Oxyca
Heaters & Boilers	heat&boil	heat&boil	heat&boil	heat&boil	3	3	3	3	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
Resupply Ship - transport mode									
Propulsion & Generation	None-Lg	None-Lg	None-Lg	None-Lg	1	1	1	1	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
Resupply Ship - DP mode									
Propulsion & Generation	None-Lg	None-Lg	None-Lg	None-Lg	1	1	1	1	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
OSR vessel									
Propulsion & Generation	None-Lg	None-Lg	None-Lg	None-Lg	1	1	1	1	None
Seldom-used units	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None
OSR work boats									
Work boats	None-Sm	None-Sm	None-Sm	None-Sm	2	2	2	2	None

Assumed Control Device Effectiveness	Restriction	Comment	Reference
Oxidation Catalyst CO reduction efficiency	80%	50-100% of capacity	D.E.C. Marine AB letter, October 9, 2008, and initial stack test
Oxidation Catalyst VOC, HAPs	70%	50-100% of capacity	D.E.C. Marine AB letter, October 9, 2008
(except metals), Formaldehyde reduction efficiency			
Oxidation Catalyst PM reduction efficiency	50%		D.E.C. Marine AB email, February 9, 2009
CDPF reduction efficiency CO, VOC, HAPs	90%		CleanAIR CDPF guarantee
CDPF reduction efficiency PM	85%		CARB Currently verified, Jan. 2009, CleanAIR Systems PERMIT
Kulluk Generator SCR NOx control	1.6 g/kW-hr	50-100% of capacity	June 2010 Discoverer Stack Testing

Engine	NO)x	CO)	vo	С	PM*		
Emission Factors / Controls	g/kW-hr	lb/gal	lb/MMBtu	lb/gal	lb/MMBtu	lb/gal	g/kWhr	lb/gal	Reference
None-Lg	12.00	0.370	0.85	0.112	0.09	0.012	0.50	0.015	1
None-Sm	15.00	0.462	0.95	0.125	0.35	0.046	1.20	0.037	2
heat&boil	20 lb/kgal	0.020	5 lb/kgal	0.005	1 lb/kgal	0.001	3 lb/kgal	0.003	3
Kulluk-SCR	1.60	0.049	-	-	-	-	-	-	4
SCR	1.60	0.049	-	-	-	-	-	-	5
Kulluk-OxyCat	-	-	-	-	-	-	0.200	0.006	6
OxyCat-Lg	-	-	0.170	0.022	0.027	0.004	0.250	0.008	7
OxyCat-Sm	-	-	0.190	0.025	0.105	0.014	0.600	0.018	8
CDPF-Lg	-	-	0.085	0.011	0.009	0.001	0.075	0.002	9
Electric	0	0	0	0	0	0	0	0	NA
							*PM2.5		

	-	,
None-Sm	2	NOx & PM: Recent stack test data, CO & VOC: AP-42.Table 3.3-1 Internal Combustion, Diesel (fuel input)-uncontrolled; ver. 10/1996
heat&boil	3	NOx & PM: Recent Stack test data, CO & VOC: AP-42. Table 1.11-2 External Combustion, Small Boilers-waste oil; ver 10/1996
Kulluk-SCR	4	Emission factors based on stack tests from the Frontier Discoverer
SCR	5	Selective Catalytic Reduction NOx emission factor based on stack tests
Kulluk-OxyCat	6	PM: Tier 2 engines
OxyCat-Lg	7	Oxidation Catalyst controls applied to reference (1) emission factors
OxyCat-Sm	8	Oxidation Catalyst controls applied to reference (2) emission factors
CDPF-Lg	9	Catalytic Diesel Particulate Filters controls applied to reference (1) emission factors

ENGINEERING CALCULATIONS

PROJECT TITLE:	BY:	BY:				
Shell - Exploration Drilling		S. Pryor				
PROJECT NO:	PAGE:	OF:	SHEET:			
180-20-6	3	16	2			
SUBJECT:	DATE:					
Kulluk / Beaufort Pmt App	1	April 28, 2011				

ALLOWABLE EMISSIONS

FUEL USE - MAX DAILY

						Max fu	el - daily		
		Capacity fue	l - hourly	MLC	Case	Drillin	g Case	Cementing/	Logging Case
Emission Unit	Capacity Values	MMBtu/hr	gal/hr	MMBtu	gal	MMBtu	gal	MMBtu	gal
Kulluk									
Generation	8,500 hp	50.58	386	1,214	9,253	1,214	9,253	857	6,531
MLC HPUs	1,500 hp	10.50	80	252	1,921	0	0	0	0
Air compressors	1,500 hp	10.50	80	252	1,921	0	0	0	0
Cranes	1,200 hp	3.36	26	24	184	24	184	40	307
Heaters & Boilers	6 MMBtu/hr	6.00	46	144	1,098	144	1,098	144	1,098
Seldom-used units	566 gal/30-days	0.10	0.79 group limit	2	19	2	19	2	19
Emergency Generator	77 gal/30-days	5.050	38.50 group limit	10	77	10	77	10	77
	•		KULLUK - SUBTOTAL		14,473		10,631		8,032
Primary Ice Management									
Propulsion & Generation	32,200 hp	225	1,718	5,410	41,238	5,410	41,238	5,410	41,238
Heaters & Boilers	10 MMBtu/hr	10	76	240	1,830	240	1,830	240	1,830
Seldom-used units	100 gal/wk	0.078	0.60 group limit	2	14	2	14	2	14
		ICE MAN	AGEMENT - SUBTOTAL		43,082		43,082		43,082
Secondary Ice Management / Anchor	Handler								
Propulsion & Generation	32,200 hp	225	1,718	5,410	41,238	5,410	41,238	5,410	41,238
Heaters & Boilers	10 MMBtu/hr	10	76	240	1,830	240	1,830	240	1,830
Seldom-used units	100 gal/wk	0.078	0.60 group limit	2	14	2	14	2	14
		ANCHOR	HANDLER - SUBTOTAL		43,082		43,082		43,082
Resupply Ship - transport mode									
Propulsion & Generation	12,000 hp	84	640	157	1,200	157	1,200	157	1,200
Seldom-used units	20 gal/wk	0.016	0.12 group limit	0.4	2.9	0.4	2.9	0.4	2.9
Resupply Ship - DP mode									
Propulsion & Generation	12,000 hp	84	640	630	4,800	630	4,800	630	4,800
Seldom-used units	20 gal/wk	0.016	0.12 group limit	0.4	2.9	0.4	2.9	0.4	2.9
		RESUP	PLY SHIPS - SUBTOTAL		6,006		6,006		6,006
OSR vessel									
Propulsion & Generation	3,487 hp	15	117	367	2,800	367	2,800	367	2,800
Seldom-used units	100 gal/wk	0.078	0.60 group limit	2	14	2	14	2	14
OSR work boats									
Work boats	3,789 gal/wk	2.96	23	71	541	71	541	71	541
		(OSR SHIPS - SUBTOTAL		3,356		3,356		3,356
			Total daily use		109,998		106,156		103,557

TOTAL WASTE INCINERATED

			MLC Case	Drilling Case	Cementing/Logging case
Incinerators	Capacity Values		lbs/day	lbs/day	lbs/day
Kulluk	276 lb/hr		3,312	3,312	3,312
Ice Management	154 lb/hr		3,696	3,696	3,696
Anchor Handler	154 lb/hr		3,696	3,696	3,696
OSR vessel	125 lb/hr		3,000	3,000	3,000
		Total daily use	13,704	13,704	13,704

ENGINEERING CALCULATIONS

BY: PROJECT TITLE: Shell - Exploration Drilling S. Pryor PROJECT NO: PAGE: SHEET: OF: 180-20-6 4 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

FUEL USE - MAX ANNUAL

					М	ax fuel - Annu	al (Modeling o	only)		
		Capacity fu	el - hourly	ML	C Case	Drilli	ng Case	Cementing	Logging Case	Total
Emission Unit	Capacity Values	MMBtu/hr	gal/hr	MMBtu	gal	MMBtu	gal	MMBtu	gal	gal
Kulluk										
Generation	8,500 hp	50.58	386	24,276	185,059	58,262	444,141	44,554	339,637	968,837
MLC HPUs	1,500 hp	10.50	80	5,040	38,420	0	0	0	0	38,420
Air compressors	1,500 hp	10.50	80	5,040	38,420	0	0	0	0	38,420
Cranes	1,200 hp	3.36	26	484	3,688	1,161	8,852	2,097	15,983	28,523
Heaters & Boilers	6 MMBtu/hr	6.00	46	2,880	21,955	6,912	52,691	7,488	57,082	131,727
Seldom-used units	566 gal/30-days	0.10	0.79 group limit	49	377	119	906	129	981	2,264
Emergency Generator	77 gal/30-days	5.050	38.50 group limit	7	51	16	123	18	133	308
		F	CULLUK - SUBTOTAL		287,971		506,713		413,816	1,208,500
Primary Ice Management										
Propulsion & Generation	32,200 hp	225	1718	41,113	313,409	98,671	752,181	106,894	814,863	1,880,453
Heaters & Boilers	10 MMBtu/hr	10	76	1,824	13,905	4,378	33,371	4,742	36,152	83,427
Seldom-used units	100 gal/wk	0.078	0.60 group limit	14	109	34	261	37	282	651
		ICE MANAC	SEMENT - SUBTOTAL		327,422		785,813		851,297	1,964,531
Secondary Ice Management / Anchor	Handler									
Propulsion & Generation	32,200 hp	225	1718	41,113	313,409	98,671	752,181	106,894	814,863	1,880,453
Heaters & Boilers	10 MMBtu/hr	10	76	1,824	13,905	4,378	33,371	4,742	36,152	83,427
Seldom-used units	100 gal/wk	0.078	0.595 group limit	14	109	34	261	37	282	651
		ANCHOR HA	ANDLER - SUBTOTAL		327,422		785,813		851,297	1,964,531
Resupply Ship - transport mode										
Propulsion & Generation	12,000 hp	84	640	1,259	9,600	3,022	23,040	3,274	24,960	57,600
Seldom-used units	20 gal/wk	0.016	0.12 group limit	7	57	18	137	19	149	343
Resupply Ship - DP mode										
Propulsion & Generation	12,000 hp	84	640	2,519	19,200	6,045	46,080	6,549	49,920	115,200
Seldom-used units	20 gal/wk	0.016	0.12 group limit	7	57	18	137	19	149	343
		RESUPPL	Y SHIPS - SUBTOTAL		28,914		69,394		75,177	173,486
OSR vessel										
Propulsion & Generation	3,487 hp	15	117	4,408	33,600	10,578	80,640	11,460	87,360	201,600
Seldom-used units	100 gal/wk	0.078	0.6 group limit	37	286	90	686	97	743	1,714
OSR work boats								1		
Work boats	3,789 gal/wk	2.96	23	1,420	10,827	3,409	25,984	3,693	28,149	64,960
		OS	R SHIPS - SUBTOTAL		44,712		107,310		116,252	268,274
			Total Annual Use		1,016,442		2,255,042		2,307,840	5,579,323
			TO	TAL ANNUA	L GALLONS	5,5	79,323			

TOTAL WASTE INCINERATED

	Capacity Values	MLC Case	Drilling Case	Cementing/Logging case	Total
Incinerators		lbs/year	lbs/year	lbs/year	tons /year
Kulluk	276 lb/hr	66,240	158,976	172,224	199
Ice Management	154 lb/hr	28,090	67,415	73,033	84
Anchor Handler	154 lb/hr	28,090	67,415	73,033	84
OSR vessel	125 lb/hr	60,000	144,000	156,000	180
	total lbs/yr	182,419	437,806	474,290	547

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts.

Arrested and

Air Sciences Inc.

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor SHEET: PROJECT NO: PAGE: OF: 180-20-6 5 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ENGINEERING CALCULATIONS

ALLOWABLE EMISSIONS NOx EMISSIONS - FOR IMPACT MODELING

shading represents OR to be demonstrated by documentation of daily fuel consumption shading represents OR to be demonstrated by documentation of weekly fuel consumption

						Max	MLC	DRILL	C/L	TOTA
Sourc	ce	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/yea
ulluk										
Genera	ration	0.049	lb/gal		19.00	456	456	456	322	2
MLC	HPUs	0.462	lb/gal		36.99	888	888	0	0	
Air co	ompressors	0.370	lb/gal		29.59	710	710	0	0	
Cranes	s	0.462	lb/gal		11.84	142	85	85	142	
Heater	ers & Boilers	0.020	lb/gal		0.91	22	22	22	22	
Seldor	m-used units	0.462	lb/gal		0.36	8.72	8.72	8.72	8.72	0.
Emerg	gency Generator	0.462	lb/gal		17.79	35.58	35.58	35.58	35.58	0.
imary Ice Mana	agement									
Propul	Ision & Generation	0.049	lb/gal		85	2,033	2,033	2,033	2,033	
Heater	rs & Boilers	0.020	lb/gal		1.52	37	37	37	37	0.
	m-used units	0.462	lb/gal		0.28	6.60	6.60	6.60	6.60	0.
econdary Ice Ma	anagement / Anchor Handler		0		85	2.033	2.033	2.033	2.033	
econdary Ice Ma		0.402	lb/gal		85	2,033	2,033	2,033	2,033	
econdary Ice Ma Propul Heater	anagement / Anchor Handler		0		85 1.52 0.28	2,033 37 6.60	2,033 37 6.60	2,033 37 6.60	2,033 37 6.60	0.
econdary Ice Ma Propul Heater Seldor	anagement / Anchor Handler Ision & Generation rs & Boilers m-used units	0.049 0.020	lb/gal lb/gal		1.52	37	37	37	37	0
econdary Ice Ma Propul Heater Seldor esupply Ship - tr	anagement / Anchor Handler lision & Generation rs & Boilers m-used units ransport mode	0.049 0.020 0.462	lb/gal lb/gal lb/gal	237	1.52 0.28	37 6.60	37 6.60	37 6.60	37 6.60	0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul	anagement / Anchor Handler Ilsion & Generation rs & Boilers m-used units ransport mode Ilsion & Generation	0.049 0.020 0.462 0.370	lb/gal lb/gal lb/gal lb/gal	237 0.055	1.52 0.28 (0*)	37 6.60 444	37 6.60 (0*)	37 6.60 (0*)	37 6.60 (0*)	0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor	anagement / Anchor Handler Ilsion & Generation rs & Boilers mused units ransport mode Ilsion & Generation m-used units	0.049 0.020 0.462	lb/gal lb/gal lb/gal	237 0.055	1.52 0.28	37 6.60	37 6.60	37 6.60	37 6.60	0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor esupply Ship - E	anagement / Anchor Handler Ilsion & Generation rs & Boilers m-used units ransport mode Ilsion & Generation m-used units DP mode	0.049 0.020 0.462 0.370 0.462	lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*)	37 6.60 444 1.32	37 6.60 (0*) (0*)	37 6.60 (0*) (0*)	37 6.60 (0*) (0*)	0. 0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor esupply Ship - E Propul	anagement / Anchor Handler Ilsion & Generation rs & Boilers mused units ransport mode Ilsion & Generation m-used units	0.049 0.020 0.462 0.370	lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*)	37 6.60 444	37 6.60 (0*)	37 6.60 (0*)	37 6.60 (0*)	0. 0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor esupply Ship - D Propul Seldor	anagement / Anchor Handler lision & Generation rs & Boilers m-used units ransport mode lision & Generation m-used units DP mode lision & Generation	0.049 0.020 0.462 0.370 0.462 0.370	lb/gal lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*) 237	37 6.60 444 1.32 1,775	37 6.60 (0*) (0*) 1,775	37 6.60 (0*) (0*) 1,775	37 6.60 (0*) (0*) 1,775	0. 0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor Seldor Seldor SR vessel	anagement / Anchor Handler lision & Generation rs & Boilers m-used units ransport mode lision & Generation m-used units DP mode lision & Generation	0.049 0.020 0.462 0.370 0.462 0.370	lb/gal lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*) 237	37 6.60 444 1.32 1,775	37 6.60 (0*) (0*) 1,775	37 6.60 (0*) (0*) 1,775	37 6.60 (0*) (0*) 1,775	0. 0. 0.
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor Seldor Seldor Seldor Seldor Seldor Propul	anagement / Anchor Handler Ilsion & Generation rts & Boilers m-used units ransport mode Ilsion & Generation m-used units DP mode Ilsion & Generation m-used units	0.049 0.020 0.462 0.370 0.462 0.370 0.462	lb/gal lb/gal lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*) 237 0.06	37 6.60 444 1.32 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	0 0 0
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor Seldor Seldor Seldor Seldor Seldor Propul	anagement / Anchor Handler Ilsion & Generation rs & Boilers mused units ransport mode Ilsion & Generation m-used units DP mode Ilsion & Generation m-used units	0.049 0.020 0.462 0.370 0.462 0.370 0.462 0.370	lb/gal lb/gal lb/gal lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*) 237 0.06 43	37 6.60 444 1.32 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32 1,035	0 0 0
econdary Ice Ma Propul Heater Seldor esupply Ship - tr Propul Seldor esupply Ship - D Propul Seldor SR vessel Propul Seldor	anagement / Anchor Handler lision & Generation rs & Boilers m-used units rransport mode lision & Generation m-used units DP mode lision & Generation m-used units	0.049 0.020 0.462 0.370 0.462 0.370 0.462 0.370	lb/gal lb/gal lb/gal lb/gal lb/gal lb/gal lb/gal		1.52 0.28 (0*) (0*) 237 0.06 43	37 6.60 444 1.32 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32	37 6.60 (0*) (0*) 1,775 1.32 1,035	0 0 0

INCINERATOR EMISSIONS

			NO _X	NOX	NOX
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	3	lb/ton	0.41	4.97	0.30
Ice Management	3	lb/ton	0.23	5.54	0.13
Anchor Handler	3	lb/ton	0.23	5.54	0.13
OSR vessel	3	lb/ton	0.19	4.50	0.27
TOTAL			1.06	20.56	0.82

	NO _X
	ton/year
TOTAL ALL SOURCES	229

EMISSION FACTORS

EMISSION FACTORS				
Source	Pollutant	EF	unit	Reference
Incinerators	NOX	3	lb/ton	AP42 Table 2.1-12, 10/96

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

PROJECT TITLE:	BY:		
Shell - Exploration Drilling		S. Pr	yor
PROJECT NO:	PAGE:	OF:	SHEET:
180-20-6	6	16	2
SUBJECT:	DATE:		
Kulluk / Beaufort Pmt App	April 28, 2011		

PM₁₀

28

PM_{2.5} ton/year

28

ENGINEERING CALCULATIONS

ALLOWABLE EMISSIONS PM_{2.5} EMISSIONS - FOR IMPACT MODELING

shading represents OR to be demonstrated by documentation of daily fuel consumption shading represents OR to be demonstrated by documentation of weekly fuel consumption

	_					Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										_
	Generation	0.008	lb/gal		2.97	71	71	71	50	
	MLC HPUs	0.018	lb/gal		1.48	36	36	0	0	0.3
	Air compressors	0.008	lb/gal		0.62	15	15	0	0	0.1
	Cranes	0.018	lb/gal		0.47	6	3	3	6	0.2
	Heaters & Boilers	0.003	lb/gal		0.15	4	4	4	4	0.2
	Seldom-used units	0.037	lb/gal		0.03	0.70	0.70	0.70	0.70	0.0
	Emergency Generator	0.037	lb/gal		1.42	2.85	2.85	2.85	2.85	0.0
Primary	Ice Management									
,	Propulsion & Generation	0.008	lb/gal		13	318	318	318	318	
	Heaters & Boilers	0.003	lb/gal		0.25	6	6	6	6	0.1
	Seldom-used units	0.037	lb/gal		0.02	0.53	0.53	0.53	0.53	0.0
	T N C C C T T D									
Seconda	ry Ice Management / Anchor Handler Propulsion & Generation	r 0.008	II. (~~1		13	318	318	318	318	
	*		lb/gal							
	Heaters & Boilers	0.003	lb/gal		0.25	6 0.53	6 0.53	6 0.53	6 0.53	
	Seldom-used units	0.037	lb/gal		0.02	0.53	0.53	0.53	0.53	0.0
Resupply	y Ship - transport mode									
	Propulsion & Generation	0.015	lb/gal	10	(0*)	18	(0*)	(0*)	(0*)	0.4
	Seldom-used units	0.037	lb/gal	0.004	(0*)	0.11	(0*)	(0*)	(0*)	0.0
Resupply	y Ship - DP mode					_				
	Propulsion & Generation	0.015	lb/gal		10	74	74	74	74	
	Seldom-used units	0.037	lb/gal		0.00	0.11	0.11	0.11	0.11	0.0
OSR ves	sel									
	Propulsion & Generation	0.015	lb/gal		2	43	43	43	43	
	Seldom-used units	0.037	lb/gal		0.02	0.53	0.53	0.53	0.53	0.0
OSR wo	rk boats					-				
	Work boats	0.037	lb/gal		0.83	20	20	20	20	1

INCINERATOR EMISSIONS

	Emission I	Factor		PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Source	PM_{10}	PM _{2.5}	unit	lb/	ır	lb/d	ay	ton/y	ear
Incinerators									
Kulluk	16.4	14	lb/ton	2.26	1.93	27.16	23.18	1.63	1.39
Ice Management	16.4	14	lb/ton	1.26	1.08	30.31	25.87	0.69	0.59
Anchor Handler	16.4	14	lb/ton	1.26	1.08	30.31	25.87	0.69	0.59
OSR vessel	16.4	14	lb/ton	1.03	0.88	24.60	21.00	1.48	1.26
TOTAL				5.81	4.96	112.37	95.93	4.49	3.83

TOTAL ALL SOURCES		

EMISSION FACTORS

Source	Pollutant	EF	unit	Reference
Incinerators	PM ₁₀	16.4	lb/ton	Disco Stack Test June 2010 (multiplied by a safety factor of 2)
Incinerators	PM _{2.5}	14	lb/ton	Disco Stack Test June 2010 (multiplied by a safety factor of 2)

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air Sciences	Inc.
--------------	------

ENGINEERING CALCULATIONS

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor SHEET: PROJECT NO: PAGE: OF: 180-20-6 7 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

CO EMISSIONS - FOR IMPACT MODELING

						Max	MLC	DRILL	C/L	TOTAL
S	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
C	Generation	0.022	lb/gal		8.60	206	206	206	146	10.80
Ν	ALC HPUs	0.025	lb/gal		2.00	48	48	0	0	0.48
А	Air compressors	0.022	lb/gal		1.79	43	43	0	0	0.43
C	Cranes	0.025	lb/gal		0.64	8	5	5	8	0.36
H	leaters & Boilers	0.005	lb/gal		0.23	5	5	5	5	0.33
S	Seldom-used units	0.125	lb/gal		0.10	2.35	2.35	2.35	2.35	0.14
E	Emergency Generator	0.125	lb/gal		4.80	9.60	9.60	9.60	9.60	0.02
Primary Ice	Management									
Р	Propulsion & Generation	0.022	lb/gal		38.32	920	920	920	920	21
H	leaters & Boilers	0.005	lb/gal		0.38	9	9	9	9	0.21
S	eldom-used units	0.125	lb/gal		0.07	1.78	1.78	1.78	1.78	0.04
Secondary Ic	ce Management / Anchor Handler									
Р	Propulsion & Generation	0.022	lb/gal		38.32	920	920	920	920	21
H	leaters & Boilers	0.005	lb/gal		0.38	9	9	9	9	0.21
S	eldom-used units	0.125	lb/gal		0.07	1.78	1.78	1.78	1.78	0.04
Resupply Sh	ip - transport mode									
Р	Propulsion & Generation	0.112	lb/gal	71	(0*)	134	(0*)	(0*)	(0*)	3.21
S	seldom-used units	0.125	lb/gal	0.015	(0*)	0.36	(0*)	(0*)	(0*)	0.02
Resupply Sh	ip - DP mode									
Р	Propulsion & Generation	0.112	lb/gal		71	535	535	535	535	6
S	eldom-used units	0.125	lb/gal		0.01	0.36	0.36	0.36	0.36	0.02
OSR vessel										
Р	ropulsion & Generation	0.112	lb/gal		13	312	312	312	312	11
	seldom-used units	0.125	lb/gal		0.07	1.78	1.78	1.78	1.78	0.11
OSR work b										
v	Work boats	0.125	lb/gal		3	67	67	67	67	4
TOTAL					183	3,234	3,097	3,007	2,949	80

INCINERATOR EMISSIONS

			СО	со	со
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	300	lb/ton	41.40	496.80	29.81
Ice Management	300	lb/ton	23.10	554.40	12.64
Anchor Handler	300	lb/ton	23.10	554.40	12.64
OSR vessel	300	lb/ton	18.75	450.00	27.00
TOTAL			106.35	2,055.60	82.09

	CO
	ton/year
TOTAL ALL SOURCES	162

EMISSION FACTORS									
Pollutant	EF	unit	Reference						
CO	300	lb/ton	AP42 Table 2.1-12, 10/96						
	60								

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

ENGINEERING CALCULATIONS

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor SHEET: PROJECT NO: PAGE: OF: 180-20-6 8 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

$\mathrm{SO}_2\,\mathrm{EMISSIONS}$ - FOR IMPACT MODELING

COMBUSTION SOURCE EMISSIONS

						Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
	Generation	0.001399	lb/gal		0.54	12.95	12.95	12.95	9.14	0.68
	MLC HPUs	0.001399	lb/gal		0.11	2.69	2.69	0	0	0.03
	Air compressors	0.001399	lb/gal		0.11	2.69	2.69	0	0	0.03
	Cranes	0.001399	lb/gal		0.04	0.43	0.26	0.26	0.43	0.02
	Heaters & Boilers	0.001399	lb/gal		0.06	1.54	1.54	1.54	1.54	0.09
	Seldom-used units	0.001399	lb/gal		0.0011	0.0264	0.0264	0.0264	0.0264	0.0016
	Emergency Generator	0.001399	lb/gal		0.0539	0.1077	0.1077	0.1077	0.1077	0.0002
rimary I	ce Management									
	Propulsion & Generation	0.001399	lb/gal		2.40	57.71	57.71	57.71	57.71	1.32
	Heaters & Boilers	0.001399	lb/gal		0.11	2.56	2.56	2.56	2.56	0.06
	Seldom-used units	0.001399	lb/gal		0.0008	0.0200	0.0200	0.0200	0.0200	0.0005
econdar	y Ice Management / Anchor Handler									
	Propulsion & Generation	0.001399	lb/gal		2.40	57.71	57.71	57.71	57.71	1.32
	Heaters & Boilers	0.001399	lb/gal		0.11	2.56	2.56	2.56	2.56	0.06
	Seldom-used units	0.001399	lb/gal		0.0008	0.0200	0.0200	0.0200	0.0200	0.0005
Resupply	Ship - transport mode									
	Propulsion & Generation	0.001399	lb/gal	0.90	(0*)	1.68	(0*)	(0*)	(0*)	0.04
	Seldom-used units	0.001399	lb/gal	0.000	(0*)	0.00	(0*)	(0*)	(0*)	0.00
Resupply	Ship - DP mode									
	Propulsion & Generation	0.001399	lb/gal		0.90	6.72	6.72	6.72	6.72	0.08
	Seldom-used units	0.001399	lb/gal		0.0002	0.0040	0.0040	0.0040	0.0040	0.0002
OSR vess	el									
	Propulsion & Generation	0.001399	lb/gal		0.16	3.92	3.92	3.92	3.92	0.14
	Seldom-used units	0.001399	lb/gal		0.0008	0.0200	0.0200	0.0200	0.0200	0.0012
OSR wor	k boats									
	Work boats	0.001399	lb/gal		0.03	0.76	0.76	0.76	0.76	0.05
TOTAL					7	154	152	147	143	4

INCINERATOR EMISSIONS

			SO ₂	SO_2	SO_2
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	2.5	lb/ton	0.35	4.14	0.25
Ice Management	2.5	lb/ton	0.19	4.62	0.11
Anchor Handler	2.5	lb/ton	0.19	4.62	0.11
OSR vessel	2.5	lb/ton	0.16	3.75	0.23
TOTAL			0.89	17.13	0.68

	SO ₂
	ton/year
TOTAL ALL SOURCES	5

EMISSION FACTORS

S = the weight % Sulfur in the Fuel		0.01009	6	
Source	Pollutant	EF	unit	Reference
All IC engines & Boilers	SO ₂	0.0107	lb/MMBtu	Calculation
Incinerators	SO ₂	2.5	lb/ton	AP42 Table 2.1-12, 10/96

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air	Sciences	Inc.
-----	----------	------

AIR SCIENCES INC.

ENGINEERING CALCULATIONS

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor SHEET: PROJECT NO: PAGE: OF: 180-20-6 9 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

VOC EMISSIONS

					Max	MLC	DRILL	C/L	TOTAL
Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk									
Generation	0.004	lb/gal		1.37	32.77	32.77	32.77	23.13	1.72
MLC HPUs	0.014	lb/gal		1.10	26.46	26.46	0	0	0.26
Air compressors	0.004	lb/gal		0.28	6.80	6.80	0	0	0.07
Cranes	0.014	lb/gal		0.35	4.23	2.54	2.54	4.23	0.20
Heaters & Boilers	0.001	lb/gal		0.05	1.10	1.10	1.10	1.10	0.07
Seldom-used units	0.046	lb/gal		0.04	0.87	0.87	0.87	0.87	0.05
Emergency Generator	0.046	lb/gal		1.77	3.54	3.54	3.54	3.54	0.01
rimary Ice Management									
Propulsion & Generation	0.004	lb/gal		6.09	146.06	146.06	146.06	146.06	3.33
Heaters & Boilers	0.001	lb/gal		0.08	1.83	1.83	1.83	1.83	0.04
Seldom-used units	0.046	lb/gal		0.03	0.66	0.66	0.66	0.66	0.01
econdary Ice Management / Anchor Handler									
Propulsion & Generation	0.004	lb/gal		6.09	146.06	146.06	146.06	146.06	3.33
Heaters & Boilers	0.001	lb/gal		0.08	1.83	1.83	1.83	1.83	0.04
Seldom-used units	0.046	lb/gal		0.03	0.66	0.66	0.66	0.66	0.01
Resupply Ship - transport mode									
Propulsion & Generation	0.012	lb/gal	7.56	(0*)	14.17	(0*)	(0*)	(0*)	0.34
Seldom-used units	0.046	lb/gal	0.005	(0*)	0.13	(0*)	(0*)	(0*)	0.01
Resupply Ship - DP mode									
Propulsion & Generation	0.012	lb/gal		7.56	56.67	56.67	56.67	56.67	0.68
Seldom-used units	0.046	lb/gal		0.0055	0.1312	0.1312	0.1312	0.1312	0.0079
OSR vessel									
Propulsion & Generation	0.012	lb/gal		1.38	33.06	33.06	33.06	33.06	1.19
Seldom-used units	0.046	lb/gal		0.03	0.66	0.66	0.66	0.66	0.04
OSR work boats									
Work boats	0.046	lb/gal		1.04	24.85	24.85	24.85	24.85	1.49
TOTAL				27	503	487	453	445	13

INCINERATOR EMISSIONS

Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	100	lb/ton	13.80	165.60	9.94
Ice Management	100	lb/ton	7.70	184.80	4.21
Anchor Handler	100	lb/ton	7.70	184.80	4.21
OSR vessel	100	lb/ton	6.25	150.00	9.00
TOTAL			35.45	685.20	27.36

	VOC
	ton/year
TOTAL ALL SOURCES	40

EMISSION FACTORS				
Source	Pollutant	EF	unit	Reference
Incinerators	VOC	100	lb/ton	AP42 Table 2.1-12, 10/96

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air Scienc	es Inc.
------------	---------

ENGINEERING CALCULATIONS

PROJECT TITLE:	BY: S. Pryor					
Shell - Exploration Drilling						
PROJECT NO:	PAGE:	OF:	SHEET:			
180-20-6	10	16	2			
SUBJECT:		DATE:				
Kulluk / Beaufort Pmt App			April 28, 2011			

ALLOWABLE EMISSIONS

LEAD EMISSIONS

COMBUSTION SOURCE EMISSIONS

						Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
	Generation	3.80E-06	lb/gal		1.47E-03	3.52E-02	3.52E-02	3.52E-02	2.48E-02	1.84E-03
	MLC HPUs	3.80E-06	lb/gal		3.05E-04	7.31E-03	7.31E-03	0.00E+00	0.00E+00	7.31E-05
	Air compressors	3.80E-06	lb/gal		3.05E-04	7.31E-03	7.31E-03	0.00E+00	0.00E+00	7.31E-05
	Cranes	3.80E-06	lb/gal		9.74E-05	1.17E-03	7.02E-04	7.02E-04	1.17E-03	5.43E-05
	Heaters & Boilers	1.18E-06	lb/gal		5.40E-05	1.30E-03	1.30E-03	1.30E-03	1.30E-03	7.78E-05
	Seldom-used units	3.80E-06	lb/gal		2.99E-06	7.18E-05	7.18E-05	7.18E-05	7.18E-05	4.31E-06
	Emergency Generator	3.80E-06	lb/gal		1.46E-04	2.93E-04	2.93E-04	2.93E-04	2.93E-04	5.86E-07
Primary Io	ce Management									
	Propulsion & Generation	3.80E-06	lb/gal		6.54E-03	1.57E-01	1.57E-01	1.57E-01	1.57E-01	3.58E-03
	Heaters & Boilers	1.18E-06	lb/gal		9.00E-05	2.16E-03	2.16E-03	2.16E-03	2.16E-03	4.92E-05
	Seldom-used units	3.80E-06	lb/gal		2.26E-06	5.43E-05	5.43E-05	5.43E-05	5.43E-05	1.24E-06
Secondary	y Ice Management / Anchor Handler									
	Propulsion & Generation	3.80E-06	lb/gal		6.54E-03	1.57E-01	1.57E-01	1.57E-01	1.57E-01	3.58E-03
	Heaters & Boilers	1.18E-06	lb/gal		9.00E-05	2.16E-03	2.16E-03	2.16E-03	2.16E-03	4.92E-05
	Seldom-used units	3.80E-06	lb/gal		2.26E-06	5.43E-05	5.43E-05	5.43E-05	5.43E-05	1.24E-06
Resupply	Ship - transport mode									
	Propulsion & Generation	3.80E-06	lb/gal	2.44E-03	(0*)	4.57E-03	(0*)	(0*)	(0*)	1.10E-04
	Seldom-used units	3.80E-06	lb/gal	4.53E-07	(0*)	1.09E-05	(0*)	(0*)	(0*)	6.52E-07
Resupply	Ship - DP mode									
	Propulsion & Generation	3.80E-06	lb/gal		2.44E-03	1.83E-02	1.83E-02	1.83E-02	1.83E-02	2.19E-04
	Seldom-used units	3.80E-06	lb/gal		4.53E-07	1.09E-05	1.09E-05	1.09E-05	1.09E-05	6.52E-07
OSR vess										
	Propulsion & Generation	3.80E-06	lb/gal		4.44E-04	1.07E-02	1.07E-02	1.07E-02	1.07E-02	3.83E-04
	Seldom-used units	3.80E-06	lb/gal		2.26E-06	5.43E-05	5.43E-05	5.43E-05	5.43E-05	3.26E-06
OSR worl	k boats									
	Work boats	3.80E-06	lb/gal		8.58E-05	2.06E-03	2.06E-03	2.06E-03	2.06E-03	1.24E-04
FOTAL					1.86E-02	4.06E-01	4.01E-01	3.87E-01	3.77E-01	1.02E-02

INCINERATOR EMISSIONS

			Lead	Lead	Lead
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	0.213	lb/ton	0.03	0.35	0.02
Ice Management	0.213	lb/ton	0.02	0.39	0.01
Anchor Handler	0.213	lb/ton	0.02	0.39	0.01
OSR vessel	0.213	lb/ton	0.01	0.32	0.02
TOTAL			0.08	1.46	0.06

	Lead
	ton/year
TOTAL ALL SOURCES	0.07

EMISSION FACTORS				
Source	Pollutant	EF unit	EF unit	
IC Engines	Lead	2.90E-05 lb/MMBtu	3.80E-06 lb/gal	
Boilers	Lead	9 lb/10 Btu	1.18E-06 lb/gal	
Incinerators	Lead		0.213 lb/ton	
Reference				
IC Engines	L & E Air Emissions	from Sources of Lead and Lo	ead Compounds, EPA 454/R	-98-006, May 1998, Section 5.2.2, Distillate oil-fired gas turbines
Boilers	AP42, Table 1.3-10. E	mission Factors For Trace F	Elements From Distillate Fue	l Oil Combustion Sources
Incinerators	AP42, Table 2.2-2 - N	letals Emission Factors for M	Mass Burn and Modular Exce	ess Air Combustors

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air Sciences	Inc.
--------------	------

ENGINEERING CALCULATIONS

PROJECT TITLE:	BY:				
Shell - Exploration Drilling		S. Pryor			
PROJECT NO:	PAGE:	OF:	SHEET:		
180-20-6	11	16	2		
SUBJECT:	DATE:				
Kulluk / Beaufort Pmt App		April 28, 20	11		

ALLOWABLE EMISSIONS

HAP EMISSIONS

COMBUSTION SOURCE EMISSIONS

							Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	Control	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk											
	Generation	1.60E-04	lb/gal	SCR, OxyCat		6.17E-02	1.48E+00	1.48E+00	1.48E+00	1.04E+00	7.75E-02
	MLC HPUs	1.60E-04	lb/gal	OxyCat		1.28E-02	3.07E-01	3.07E-01	0.00E+00	0.00E+00	3.07E-03
	Air compressors	1.60E-04	lb/gal	OxyCat		1.28E-02	3.07E-01	3.07E-01	0.00E+00	0.00E+00	3.07E-03
	Cranes	1.60E-04	lb/gal	OxyCat		4.10E-03	4.91E-02	2.95E-02	2.95E-02	4.91E-02	2.28E-03
	Heaters & Boilers	4.41E-05	lb/gal			2.02E-03	4.84E-02	4.84E-02	4.84E-02	4.84E-02	2.90E-03
	Seldom-used units	5.16E-04	lb/gal			4.05E-04	9.73E-03	9.73E-03	9.73E-03	9.73E-03	5.84E-04
	Emergency Generator	5.16E-04	lb/gal			1.99E-02	3.97E-02	3.97E-02	3.97E-02	3.97E-02	7.94E-05
Primary Ice	e Management										
	Propulsion & Generation	1.60E-04	lb/gal	SCR, OxyCat		2.75E-01	6.59E+00	6.59E+00	6.59E+00	6.59E+00	1.50E-01
	Heaters & Boilers	4.41E-05	lb/gal			3.36E-03	8.06E-02	8.06E-02	8.06E-02	8.06E-02	1.84E-03
	Seldom-used units	5.16E-04	lb/gal			3.07E-04	7.37E-03	7.37E-03	7.37E-03	7.37E-03	1.68E-04
Secondary	Ice Management / Anchor Handler										
	Propulsion & Generation	1.60E-04	lb/gal	SCR, OxyCat		2.75E-01	6.59E+00	6.59E+00	6.59E+00	6.59E+00	1.50E-01
	Heaters & Boilers	4.41E-05	lb/gal			3.36E-03	8.06E-02	8.06E-02	8.06E-02	8.06E-02	1.84E-03
	Seldom-used units	5.16E-04	lb/gal			3.07E-04	7.37E-03	7.37E-03	7.37E-03	7.37E-03	1.68E-04
Resupply S	hip - transport mode										
	Propulsion & Generation	5.16E-04	lb/gal		3.30E-01	(0*)	6.19E-01	(0*)	(0*)	(0*)	1.48E-02
	Seldom-used units	5.16E-04	lb/gal		6.14E-05	(0*)	1.47E-03	(0*)	(0*)	(0*)	8.84E-05
Resupply S	ship - DP mode										
	Propulsion & Generation	5.16E-04	lb/gal			3.30E-01	2.47E+00	2.47E+00	2.47E+00	2.47E+00	2.97E-02
	Seldom-used units	5.16E-04	lb/gal			6.14E-05	1.47E-03	1.47E-03	1.47E-03	1.47E-03	8.84E-05
OSR vessel											
	Propulsion & Generation	5.16E-04	lb/gal			6.02E-02	1.44E+00	1.44E+00	1.44E+00	1.44E+00	5.20E-02
	Seldom-used units	5.16E-04	lb/gal			3.07E-04	7.37E-03	7.37E-03	7.37E-03	7.37E-03	4.42E-04
OSR work	boats										
	Work boats	5.16E-04	lb/gal			1.16E-02	2.79E-01	2.79E-01	2.79E-01	2.79E-01	1.67E-02
TOTAL						1.07	20.43	19.79	19.18	18.76	0.51

INCINERATOR EMISSIONS

			HAP	HAP	HAP
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	2.51E-01	lb/ton	0.03	0.42	0.02
Ice Management	2.51E-01	lb/ton	0.02	0.46	0.01
Anchor Handler	2.51E-01	lb/ton	0.02	0.46	0.01
OSR vessel	2.51E-01	lb/ton	0.02	0.38	0.02
TOTAL			0.09	1.72	0.07

	HAP
	ton/year
TOTAL ALL SOURCES	0.58

EMISSION FACTORS

ENHOSI	UNFACIORS				
	Source	Pollutant	EF ui	nit	Reference
	IC Engines-uncontrolled	HAP	5.16E-04 lb/	/gal	See Page 13
	IC Engines-OxyCat controlled	HAP	1.60E-04 lb/	/gal	See Page 13
	Boilers	HAP	4.41E-05 lb/	/gal	See Page 13
	Incinerators	HAP	2.51E-01 lb/	/ton	See Page 13

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air Sciences Inc.	PROJECT TITLE: Shell - Exploration Drilling			BY: S. Prvor			
	PROJECT NO:	PAGE:	OF:	SHEET:			
	180-20-6	12	16	2			
ENGINEERING CALCULATIONS	SUBJECT:	DATE:					
	Kulluk / Beaufort Pmt App	А	pril 28, 20	11			

ALLOWABLE EMISSIONS

FORMALDEHYDE EMISSIONS

COMBUSTION SOURCE EMISSION	NS

						Max	MLC	DRILL	C/L	TOTAL
Source	Emission Factor	unit	Control	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
Generation	4.64E-05	lb/gal	SCR, OxyCat		1.79E-02	4.30E-01	4.30E-01	4.30E-01	3.03E-01	2.25E-02
MLC HPUs	4.64E-05	lb/gal	OxyCat		3.72E-03	8.92E-02	8.92E-02	0.00E+00	0.00E+00	8.92E-04
Air compressors	4.64E-05	lb/gal	OxyCat		3.72E-03	8.92E-02	8.92E-02	0.00E+00	0.00E+00	8.92E-04
Cranes	4.64E-05	lb/gal	OxyCat		1.19E-03	1.43E-02	8.56E-03	8.56E-03	1.43E-02	6.62E-04
Heaters & Boilers	3.30E-05	lb/gal			1.51E-03	3.62E-02	3.62E-02	3.62E-02	3.62E-02	2.17E-03
Seldom-used units	1.55E-04	lb/gal			1.22E-04	2.92E-03	2.92E-03	2.92E-03	2.92E-03	1.75E-04
Emergency Generator	1.55E-04	lb/gal			5.96E-03	1.19E-02	1.19E-02	1.19E-02	1.19E-02	2.38E-05
Primary Ice Management										
Propulsion & Generation	4.64E-05	lb/gal	SCR, OxyCat		7.98E-02	1.91E+00	1.91E+00	1.91E+00	1.91E+00	4.37E-02
Heaters & Boilers	3.30E-05	lb/gal			2.52E-03	6.04E-02	6.04E-02	6.04E-02	6.04E-02	1.38E-03
Seldom-used units	1.55E-04	lb/gal			9.21E-05	2.21E-03	2.21E-03	2.21E-03	2.21E-03	5.04E-05
Secondary Ice Management / Anchor Handler										
Propulsion & Generation	4.64E-05	lb/gal	SCR, OxyCat		7.98E-02	1.91E+00	1.91E+00	1.91E+00	1.91E+00	4.37E-02
Heaters & Boilers	3.30E-05	lb/gal			2.52E-03	6.04E-02	6.04E-02	6.04E-02	6.04E-02	1.38E-03
Seldom-used units	1.55E-04	lb/gal			9.21E-05	2.21E-03	2.21E-03	2.21E-03	2.21E-03	5.04E-05
Resupply Ship - transport mode										
Propulsion & Generation	1.55E-04	lb/gal		9.91E-02	(0*)	1.86E-01	(0*)	(0*)	(0*)	4.46E-03
Seldom-used units	1.55E-04	lb/gal		1.84E-05	(0*)	4.42E-04	(0*)	(0*)	(0*)	2.65E-05
Resupply Ship - DP mode										
Propulsion & Generation	1.55E-04	lb/gal			9.91E-02	7.43E-01	7.43E-01	7.43E-01	7.43E-01	8.92E-03
Seldom-used units	1.55E-04	lb/gal			1.84E-05	4.42E-04	4.42E-04	4.42E-04	4.42E-04	2.65E-05
OSR vessel										
Propulsion & Generation	1.55E-04	lb/gal			1.81E-02	4.33E-01	4.33E-01	4.33E-01	4.33E-01	1.56E-02
Seldom-used units	1.55E-04	lb/gal			9.21E-05	2.21E-03	2.21E-03	2.21E-03	2.21E-03	1.33E-04
OSR work boats										
Work boats	1.55E-04	lb/gal			3.49E-03	8.38E-02	8.38E-02	8.38E-02	8.38E-02	5.03E-03
FOTAL					0.32	6.08	5.89	5.71	5.59	0.15

INCINERATOR EMISSIONS

			CH ₂ O	CH ₂ O	CH ₂ O
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	0.00E+00	lb/ton	0.00	0.00	0.00
Ice Management	0.00E+00	lb/ton	0.00	0.00	0.00
Anchor Handler	0.00E+00	lb/ton	0.00	0.00	0.00
OSR vessel	0.00E+00	lb/ton	0.00	0.00	0.00
TOTAL			0.00	0.00	0.00

	CH ₂ O
	ton/year
TOTAL ALL SOURCES	0.15

EMISSION FACTORS

EMISSION FACTORS			
Source	Pollutant	EF unit	Reference
IC Engines-uncontrolled	CH ₂ O	1.55E-04 lb/gal	AP42 Table 3.3-2, Speciated Organic Compound Emission Factors For Uncontrolled Diesel Engines
IC Engines-OxyCat controlled	CH ₂ O	4.64E-05 lb/gal	AP42 Table 3.3-2, Speciated Organic Compound Emission Factors For Uncontrolled Diesel Engines
Boilers	CH_2O	3.30E-05 lb/gal	AP42 Table 1.3-9, Emission Factors For Speciated Organic Compounds From Fuel Oil Combustion
Incinerators	CH ₂ O	0.00E+00 lb/ton	

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

Air Sciences Inc.

ENGINEERING CALCULATIONS

 PROJECT TITLE: Shell - Exploration Drilling
 BY: S. Pryor

 PROJECT NO:
 PAGE:
 OF:

 180-20-6
 13
 16

 SUBJECT:
 DATE:

 Kulluk / Beaufort Pmt App
 April 28, 2011

		gines Emission Facto				sion Factors			Incinerat	or Emission Factor
Factors		Organic Compoun trolled Diesel Engin			AP42 Table 1.3-9, Emiss Organic Compounds Fr					
			EF			EI	,			
Pollutant			lb/MMBtu	lb/gal	Pollutant	lb/10 ³ gal	lb/gal			
Acaldehyde			7.67E-04	1.01E-04						
Acenaphthene			1.42E-06	1.86E-07	Acenaphthene	2.11E-05	2.11E-08			
Acenaphthylene			5.06E-06	6.64E-07	Acenaphthylene	2.53E-07	2.53E-10			
Acrolein			9.25E-05	1.21E-05						
Anthracene			1.87E-06	2.45E-07	Anthracene	1.22E-06	1.22E-09			
Benzene			9.33E-04	1.22E-04	Benzene	2.14E-04	2.14E-07			
Benzo(a)anthracene			1.68E-06	2.20E-07	Benz(a)anthracene	4.01E-06	4.01E-09			
Benzo(a)pyrene			1.88E-07	2.47E-08						
Benzo(b)fluoranthene	1		9.91E-08	1.30E-08						
					Benzo(b,k)fluoranthene	1.48E-06	1.48E-09			
Benzo(g,h,l)perylene			4.89E-07	6.41E-08	Benzo(g,h,i)perylene	2.26E-06	2.26E-09			
Benzo(k)fluoranthene	5		1.55E-07	2.03E-08						
1,3-Butadiene			3.91E-05	5.13E-06						
Chrysene			3.53E-07	4.63E-08	Chrysene	2.38E-06	2.38E-09			
Dibenz(a,h)anthracene	e		5.83E-07	7.65E-08	Dibenzo(a,h)anthracene	1.67E-06	1.67E-09			
					Ethylbenzene	6.36E-05	6.36E-08			
Fluoranthene			7.61E-06	9.98E-07	Fluoranthene	4.84E-06	4.84E-09			
Fluorene			2.92E-05		Fluorene	4.47E-06	4.47E-09			
Formaldehyde			1.18E-03	1.55E-04	Formaldehyde	3.30E-02	3.30E-05			
Indeno(1,2,3-cd)pyrer	ne		3.75E-07		Indo(1,2,3-cd)pyrene	2.14E-06	2.14E-09			
Naphthalene			8.48E-05		Naphthalene	1.13E-03	1.13E-06			
Phenanthrene			2.94E-05	3.86E-06	Phenanthrene	1.05E-05	1.05E-08			
Pyrene			4.78E-06	6.27E-07		4.25E-06	4.25E-09			
Toluene			4.09E-04	5.37E-05	Toluene	6.20E-03	6.20E-06			
Xylenes			2.85E-04	3.74E-05						
,					o-Xylene	1.09E-04	1.09E-07			
				5.08E-04			4.08E-05			
			EF			Irces EF			Como	oustors
Metal	<u> </u>		lb/MMBtu	lb/gal	Metal	lb/10 ¹² Btu	lb/gal	Metal		lb/ton
Arsenic Cadmium	As	11 lb/1012 Btu	4.90E-06	6.43E-07	Arsenic As Cadmium Cd	4	5.25E-07	Arsenic	As	4.37E-03
	Cd	0.35 lb/10 ⁶ gal	1.10E-05				3.94E-07	Cadmium	Cd	1.09E-02
Chromium	Cr	0.55 10/10 gai	2.67E-06		Chromium Cr	3 9	3.94E-07	Chromium	Cr	8.97E-03
Lead	Pb	6.2 lb/1012 Btu	2.9E-05	3.80E-06 8.13E-07	Lead Pb	3	1.18E-06 3.94E-07		Pb	2.13E-01
Mercury Nickel	Hg Ni	0.41 lb/10° gal	6.20E-06 3.13E-06		Mercury Hg Nickel Ni	3	3.94E-07 3.94E-07	Nickel	Hg Ni	5.60E-03 7.85E-03
Nickei	Total Metals		5.15E-00	7.46E-06	Total Metals	5	3.28E-06	Total Metals	INI	2.51E-01
	Total HAPs			5.16E-04	Total HAPs		4.41E-05	Total HAPs		2.51E-01
	Total HATS			5.10E-04	Total HATS		4.41E-05	Total HALS		2.51E-01
	Р									
Greatest Emited HA				1.55E-04			3.30E-05			
Greatest Emited HA Formaldehyde										
Formaldehyde ICE Metal Reference		missions from Sources	of Arsenic and A	rsenic Com	ounds, EPA-454/R-98-013 1	une 1998. Table 4-3	20. Distillate	Oil Fired Turb	ine	
Formaldehyde ICE Metal Reference Arsenic	L & E Air Ei			-	oounds, EPA-454/R-98-013, Ju				ine	
Formaldehyde ICE Metal Reference Arsenic Cadmium	L & E Air Er L & E Air Er	missions from Sources	of Cadmium and	Cadmium C	compounds, EPA-454/R-93-04	0, Sept. 1993, Tabl			ine	
Formaldehyde ICE Metal Reference Arsenic Cadmium Chromium	L & E Air Er L & E Air Er L & E Air Er	missions from Sources missions from Sources	of Cadmium and of Chromium, El	Cadmium C PA-450/4-84	ompounds, EPA-454/R-93-04 -007g, July 1984, Table 36, D	0, Sept. 1993, Tabl istillate #2	e 6-12, No.	2 Distillate Oil		
Formaldehyde ICE Metal Reference Arsenic Cadmium Chromium Lead	L & E Air Er L & E Air Er L & E Air Er L & E Air Er	missions from Sources missions from Sources missions from Sources	of Cadmium and of Chromium, El of Lead and Lead	Cadmium C PA-450/4-84 d Compound	ompounds, EPA-454/R-93-04 -007g, July 1984, Table 36, D s, EPA 454/R-98-006, May 19	0, Sept. 1993, Tabl istillate #2 998, Section 5.2.2, 1	e 6-12, No. Distillate oi	2 Distillate Oil -fired gas turbin		
Formaldehyde ICE Metal Reference Arsenic Cadmium Chromium	L & E Air Er L & E Air Er	missions from Sources missions from Sources missions from Sources missions from Sources	of Cadmium and of Chromium, El of Lead and Lead of Mercury and !	Cadmium C PA-450/4-84 d Compound Mercury Con	ompounds, EPA-454/R-93-04 -007g, July 1984, Table 36, D	0, Sept. 1993, Tabl istillate #2 998, Section 5.2.2, 1 Dec. 1997, Table 6	e 6-12, No. Distillate oi	2 Distillate Oil -fired gas turbin		

Air Sciences Inc.

ENGINEERING CALCULATIONS

PROJECT TITLE: BY: Shell - Exploration Drilling S. Pryor PROJECT NO: PAGE: SHEET: OF: 180-20-6 14 16 2 SUBJECT: DATE: Kulluk / Beaufort Pmt App April 28, 2011

ALLOWABLE EMISSIONS

GREENHOUSE GAS EMISSIONS

C	OMBUSTION	SOURCE	EMISSIONS	
_				

					Max	MLC	DRILL	C/L	TOTAL
Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk									
Generation	2.15E+01	lb/gal		8,274	198,581	198,581	198,581	140,175	10,39
MLC HPUs	2.15E+01	lb/gal		1,718	41,228	41,228	0	0	41
Air compressors	2.15E+01	lb/gal		1,718	41,228	41,228	0	0	41
Cranes	2.15E+01	lb/gal		550	6,596	3,958	3,958	6,596	30
Heaters & Boilers	2.15E+01	lb/gal		982	23,559	23,559	23,559	23,559	1,41
Seldom-used units	2.15E+01	lb/gal		17	405	405	405	405	2
Emergency Generator	2.15E+01	lb/gal		826	1,653	1,653	1,653	1,653	
Primary Ice Management									
Propulsion & Generation	2.15E+01	lb/gal		36,876	885,027	885,027	885,027	885,027	20,17
Heaters & Boilers	2.15E+01	lb/gal		1,636	39,265	39,265	39,265	39,265	89
Seldom-used units	2.15E+01	lb/gal		13	307	307	307	307	
Secondary Ice Management / Anchor I	Handler								
Propulsion & Generation	2.15E+01	lb/gal		36,876	885,027	885,027	885,027	885,027	20,1
Heaters & Boilers	2.15E+01	lb/gal		1,636	39,265	39,265	39,265	39,265	89
Seldom-used units	2.15E+01	lb/gal		13	307	307	307	307	
Resupply Ship - transport mode									
Propulsion & Generation	2.15E+01	lb/gal	13,743	(0*)	25,754	(0*)	(0*)	(0*)	6
Seldom-used units	2.15E+01	lb/gal	3	(0*)	61	(0*)	(0*)	(0*)	
Resupply Ship - DP mode									
Propulsion & Generation	2.15E+01	lb/gal		13,743	103,015	103,015	103,015	103,015	1,23
Seldom-used units	2.15E+01	lb/gal		3	61	61	61	61	
OSR vessel									
Propulsion & Generation	2.15E+01	lb/gal		2,504	60,092	60,092	60,092	60,092	2,10
Seldom-used units	2.15E+01	lb/gal		13	307	307	307	307	
OSR work boats									
Work boats	2.15E+01	lb/gal		484	11,618	11,618	11,618	11,618	6
FOTAL				107.880	2,363,354	2,334,900	2,252,444	2.196.676	59,8

INCINERATOR EMISSIONS

					CO ₂ e	CO ₂ e	CO ₂ e
Sourc	ce	Emission Factor	unit		lb/hr	lb/day	ton/year
ncinerators							
Kulluk	k	1,970	lb/ton		271.86	3262.32	195.74
Ice Ma	anagement	1,970	lb/ton		151.69	3640.56	83.00
Ancho	or Handler	1,970	lb/ton		151.69	3640.56	83.00
OSR v	/essel	1,970	lb/ton		123.13	2955.00	177.30
ΤΟΤΑ	AL				698.37	13,498.44	539.05
OFFGAS EMI	\$\$10N\$					CH	OffGas_CO2e_tpy
						CH ₄	CH ₄
	Source					lb/yr ^a	ton/year ^b
	ng Mud De-gassing		n			399	4.19
Meth	nane Mass Caculation.xls C	ctober 22,2010	^b CH ₄ (lb/year) x Muliplier				
							CO ₂ e
							ton/year
TOTAL ALL S	SOURCES						60,413
EMISSION FA	CTORS						
$CO_2 + CH_4 * 21 + 1$	$N_2O*310 \rightarrow CO_2e$						
Pollutant	Туре	Multiplier	Reference	EF	unit	Reference	
CO ₂	comb	1	40 CFR 98, Table A-1	73.96	kg/MMBtu	40 CFR Part 98, Subpart C, Table C-1 (Distillate	Fuel Oil No. 2)
CH ₄	comb	21	40 CFR 98, Table A-1	3.00E-03	kg/MMBtu	40 CFR Part 98, Subpart C, Table C-2 (Fuel Type	e: Petroleum)
N ₂ O	comb	310	40 CFR 98, Table A-1	6.00E-04	kg/MMBtu	40 CFR Part 98, Subpart C, Table C-2 (Fuel Type	e: Petroleum)
Sourc	ce	Pollutant	EF unit	EF	unit		
IC Eng	gines & Boilers	CO ₂ e	1.64E+02 lb/MMBtu	2.15E+01	l lb/gal		
Incine	rators	CO_2		1,970	lb/ton	AP42 Table 2.1-7, 10/96	

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts.

^Values in this column represent maximum emissions independent of activity.

ENGINEERING CALCULATIONS

PROJECT TITLE:	BY:				
Shell - Exploration Drilling	S. Pryor				
PROJECT NO:	PAGE:	OF:	SHEET:		
180-20-6	15	16	2		
SUBJECT:	DATE:				
Kulluk / Beaufort Pmt App	April 28, 2011				

ALLOWABLE EMISSIONS

SULFURIC ACID EMISSIONS

COMBUSTION SOURCE EMISSIONS

						Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
	Generation	1.07E-04	lb/gal		4.13E-02	9.91E-01	9.91E-01	9.91E-01	7.00E-01	5.19E-02
	MLC HPUs	1.07E-04	lb/gal		8.57E-03	2.06E-01	2.06E-01	0.00E+00	0.00E+00	2.06E-03
	Air compressors	1.07E-04	lb/gal		8.57E-03	2.06E-01	2.06E-01	0.00E+00	0.00E+00	2.06E-03
	Cranes	1.07E-04	lb/gal		2.74E-03	3.29E-02	1.98E-02	1.98E-02	3.29E-02	1.53E-03
	Heaters & Boilers	1.07E-04	lb/gal		4.90E-03	1.18E-01	1.18E-01	1.18E-01	1.18E-01	7.05E-03
	Seldom-used units	1.07E-04	lb/gal		8.42E-05	2.02E-03	2.02E-03	2.02E-03	2.02E-03	1.21E-04
	Emergency Generator	1.07E-04	lb/gal		4.12E-03	8.25E-03	8.25E-03	8.25E-03	8.25E-03	1.65E-05
rimary I	ce Management									
	Propulsion & Generation	1.07E-04	lb/gal		1.84E-01	4.42E+00	4.42E+00	4.42E+00	4.42E+00	1.01E-01
	Heaters & Boilers	1.07E-04	lb/gal		8.17E-03	1.96E-01	1.96E-01	1.96E-01	1.96E-01	4.47E-03
	Seldom-used units	1.07E-04	lb/gal		6.38E-05	1.53E-03	1.53E-03	1.53E-03	1.53E-03	3.49E-05
lecondary	y Ice Management / Anchor Handler									
	Propulsion & Generation	1.07E-04	lb/gal		1.84E-01	4.42E+00	4.42E+00	4.42E+00	4.42E+00	1.01E-01
	Heaters & Boilers	1.07E-04	lb/gal		8.17E-03	1.96E-01	1.96E-01	1.96E-01	1.96E-01	4.47E-03
	Seldom-used units	1.07E-04	lb/gal		6.38E-05	1.53E-03	1.53E-03	1.53E-03	1.53E-03	3.49E-05
Resupply	Ship - transport mode									
	Propulsion & Generation	1.07E-04	lb/gal	6.86E-02	(0*)	1.29E-01	(0*)	(0*)	(0*)	3.08E-03
	Seldom-used units	1.07E-04	lb/gal	1.28E-05	(0*)	3.06E-04	(0*)	(0*)	(0*)	1.84E-05
Resupply	Ship - DP mode									
	Propulsion & Generation	1.07E-04	lb/gal		6.86E-02	5.14E-01	5.14E-01	5.14E-01	5.14E-01	6.17E-03
	Seldom-used units	1.07E-04	lb/gal		1.28E-05	3.06E-04	3.06E-04	3.06E-04	3.06E-04	1.84E-05
OSR vess										
	Propulsion & Generation	1.07E-04	lb/gal		1.25E-02	3.00E-01	3.00E-01	3.00E-01	3.00E-01	1.08E-02
	Seldom-used units	1.07E-04	lb/gal		6.38E-05	1.53E-03	1.53E-03	1.53E-03	1.53E-03	9.18E-05
OSR worl	k boats									
	Work boats	1.07E-04	lb/gal		2.42E-03	5.80E-02	5.80E-02	5.80E-02	5.80E-02	3.48E-03
FOTAL					5.38E-01	1.18E+01	1.17E+01	1.12E+01	1.10E+01	2.99E-01

INCINERATOR EMISSIONS

			H_2SO_4	H ₂ SO ₄	H_2SO_4
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	1.2	lb/ton	0.17	1.99	0.12
Ice Management	1.2	lb/ton	0.09	2.22	0.05
Anchor Handler	1.2	lb/ton	0.09	2.22	0.05
OSR vessel	1.2	lb/ton	0.08	1.80	0.11
TOTAL			0.43	8.22	0.33

	H_2SO_4
	ton/year
TOTAL ALL SOURCES	0.63

EMISSION FACTORS				
S = the weight % Sulfur in the Fuel	0.0100	%		
$S + O_2 \rightarrow SO_2$				
$2SO_2 + O_2 -> 2SO_3$				
$SO_3 + H_2O \rightarrow H_2SO_4$				
Pollutant	Formula	MW		
Sulfuric Acid	H_2SO_4	98.079 g/g-mol	_	
Sulfur	S	32.066 g/g-mol		
		3.06 weight con	version of S to H ₂ SO ₄	
Source	Pollutant	EF unit	EF unit	Reference
IC Engines & Boilers	H_2SO_4	8.17E-04 lb/MMBtu	1.07E-04 lb/gal	Calculation "
Incinerators	H_2SO_4		1.2 lb/ton	AP42 Table 2.2-2, 1/95 b
a Conversion assumed of	5.0%	Ref: AP42, Section 1.3.3.	2 Sulfur Oxides Emissions	s. Maximum conversion of SO2 to SO3 from fuel oil combustion in boilers
" Acid Gas Emission Factors for Multiple He	arth Sewage Sludge Incine	rators, Uncontrolled		
*This activity cannot occur simultaneously w	ith Resupply - DP mode. I	OP mode has greater impacts		
^Values in this column represent maximum e	missions independent of ac	tivity.		

Air Sciences Inc.

ENGINEERING CALCULATIONS

PROJECT TITLE:	BY:				
Shell - Exploration Drilling	S. Pryor				
PROJECT NO:	PAGE:	OF:	SHEET:		
180-20-6	16	16	2		
SUBJECT:	DATE:				
Kulluk / Beaufort Pmt App	April 28, 2011				

H₂S ton/year 0.39

ALLOWABLE EMISSIONS

HYDROGEN SULFIDE EMISSIONS

COMBUSTION SOURCE EMISSIONS

						Max	MLC	DRILL	C/L	TOTAL
	Source	Emission Factor	unit	lb/hr^	lb/hr	lb/day^	lb/day	lb/day	lb/day	ton/year
Kulluk										
	Generation	7.45E-06	lb/gal		2.87E-03	6.89E-02	6.89E-02	6.89E-02	4.87E-02	3.61E-03
	MLC HPUs	7.45E-06	lb/gal		5.96E-04	1.43E-02	1.43E-02	0.00E+00	0.00E+00	1.43E-04
	Air compressors	7.45E-06	lb/gal		5.96E-04	1.43E-02	1.43E-02	0.00E+00	0.00E+00	1.43E-04
	Cranes	7.45E-06	lb/gal		1.91E-04	2.29E-03	1.37E-03	1.37E-03	2.29E-03	1.06E-04
	Heaters & Boilers	7.45E-06	lb/gal		3.41E-04	8.18E-03	8.18E-03	8.18E-03	8.18E-03	4.91E-04
	Seldom-used units	7.45E-06	lb/gal		5.86E-06	1.41E-04	1.41E-04	1.41E-04	1.41E-04	8.44E-06
	Emergency Generator	7.45E-06	lb/gal		2.87E-04	5.74E-04	5.74E-04	5.74E-04	5.74E-04	1.15E-06
Primary Io	ce Management									
	Propulsion & Generation	7.45E-06	lb/gal		1.28E-02	3.07E-01	3.07E-01	3.07E-01	3.07E-01	7.01E-03
	Heaters & Boilers	7.45E-06	lb/gal		5.68E-04	1.36E-02	1.36E-02	1.36E-02	1.36E-02	3.11E-04
	Seldom-used units	7.45E-06	lb/gal		4.44E-06	1.06E-04	1.06E-04	1.06E-04	1.06E-04	2.43E-06
Secondary	/ Ice Management / Anchor Handler									
	Propulsion & Generation	7.45E-06	lb/gal		1.28E-02	3.07E-01	3.07E-01	3.07E-01	3.07E-01	7.01E-03
	Heaters & Boilers	7.45E-06	lb/gal		5.68E-04	1.36E-02	1.36E-02	1.36E-02	1.36E-02	3.11E-04
	Seldom-used units	7.45E-06	lb/gal		4.44E-06	1.06E-04	1.06E-04	1.06E-04	1.06E-04	2.43E-06
Resupply	Ship - transport mode									
	Propulsion & Generation	7.45E-06	lb/gal	4.77E-03	(0*)	8.94E-03	(0*)	(0*)	(0*)	2.15E-04
	Seldom-used units	7.45E-06	lb/gal	8.87E-07	(0*)	2.13E-05	(0*)	(0*)	(0*)	1.28E-06
Resupply	Ship - DP mode									
	Propulsion & Generation	7.45E-06	lb/gal		4.77E-03	3.58E-02	3.58E-02	3.58E-02	3.58E-02	4.29E-04
	Seldom-used units	7.45E-06	lb/gal		8.87E-07	2.13E-05	2.13E-05	2.13E-05	2.13E-05	1.28E-06
OSR vess	el									
	Propulsion & Generation	7.45E-06	lb/gal		8.69E-04	2.09E-02	2.09E-02	2.09E-02	2.09E-02	7.51E-04
	Seldom-used units	7.45E-06	lb/gal		4.44E-06	1.06E-04	1.06E-04	1.06E-04	1.06E-04	6.39E-06
OSR work	x boats									
	Work boats	7.45E-06	lb/gal		1.68E-04	4.03E-03	4.03E-03	4.03E-03	4.03E-03	2.42E-04
FOTAL					0.04	0.82	0.81	0.78	0.76	0.02

INCINERATOR EMISSIONS

			H_2S	H_2S	H_2S
Source	Emission Factor	unit	lb/hr	lb/day	ton/year
Incinerators					
Kulluk	1.33	lb/ton	0.18	2.20	0.13
Ice Management	1.33	lb/ton	0.10	2.46	0.06
Anchor Handler	1.33	lb/ton	0.10	2.46	0.06
OSR vessel	1.33	lb/ton	0.08	2.00	0.12
TOTAL			0.47	9.12	0.36

TOTAL ALL SOURCES		

EMISSION FACTORS	

Pollutant	Formula	MW	-	
Sulfur Dioxide	SO_2	64 g/g-mol	-	
Hydrogen sulfide	H_2S	34.081 g/g-mol		
		0.53 weight conver	rsion of SO2 to H2S	
Source	Pollutant	EF unit	EF unit	Reference
IC Engines & Boilers	H_2SO_4	5.68E-03 lb/MMBtu	7.45E-06 lb/gal	SO2 Calculation multiplied by weight conversion of SO2 to H2S a
Incinerators	H_2SO_4		1.33 lb/ton	SO2 emission factor multiplied by weight conversion of SO2 to H2S a

*This activity cannot occur simultaneously with Resupply - DP mode. DP mode has greater impacts. ^Values in this column represent maximum emissions independent of activity.

	Ain Sciences Tro	PROJECT TITLE: Shell OCS Permit				BY:	G . D	
2	Air Sciences Inc.					S. Pryor		
R SCIENCES INC.		PROJECT N	D: 180-1	20.6		PAGE: 1	OF: 4	SHEET 3
	ENGINEERING CALCULATIONS	SUBJECT:	180-	20-0		DATE:	4	5
PERFER PRESSAR			Iodel Emiss	ion Summar	у		pril 28, 2011	
		_						
0	Unit Kulluk OCS Source - Daily Maximum Emissions for o	each source	group					
MLC Ca	ise							
		-						=
		NO _X	PM _{2.5}	PM_{10}	CO	SO ₂	NH ₃	
Kulluk	STACK	g/s	g/s	g/s	g/s	g/s	g/s	=
Kulluk	MAINENGS	2.395	0.374	0.374	1.08	6.80E-02	0.09	
	MLCHPU_A	2.330	0.093	0.093	0.13		0.00	
	MLCHPU_B	2.330	0.093	0.093	0.13		0.00	
	AIRCMP_A	1.864	0.039	0.039	0.11		0.00	
	AIRCMP_B	1.864	0.039	0.039	0.11		0.00	
	CRANE_A	0.149	0.006	0.006	0.01		0.00	
	CRANE_B	0.149	0.006	0.006	0.01		0.00	
	CRANE_C	0.149	0.006	0.006	0.01		0.00	
	HEATBOIL	0.115	0.019	0.019	0.03		0.00	
	INCIN_K	0.052	0.243	0.285	5.22		0.00	
	SELDOML (no egen.)	0.032	0.004	0.004	0.01		0.00	
	SELDOMH (egen.)	2.242	0.179	0.179	0.60		0.00	
Primary I	ce Management							
	Propulsion & Generation	10.672	1.667	1.667	4.83		0.20	
	Heaters & Boilers	0.192	0.032	0.032	0.05		0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
Secondar	y Ice Management / Anchor Handler							
	Propulsion & Generation	10.672	1.667	1.667	4.83	3.03E-01	0.20	
	Heaters & Boilers	0.192	0.032	0.032	0.05		0.00	
	Seldom-used units	0.035	0.003	0.003	0.01		0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
	Model ID: ICEMGMT; ICE MGMT/AH AREAPOLY ^{1,2}	2.51E-06	4.22E-07	4.27E-07	1.79E-06	7.82E-08	4.63E-08	
Resupply	Ship - DP mode	0.014	0.000	0.000	• • •	0.505.00	0.00	
	Propulsion & Generation	9.316	0.388	0.388	2.81	3.53E-02	0.00	
	Seldom-used units	0.007	0.001	0.001	0.00		0.00	
	Model ID: RESUP_DP	9.32	0.39	0.39	2.81	0.04	0.00	
Resupply	Ship - transport mode					0.00	_	
	Propulsion & Generation	0.000	0.000	0.000	0.00		0.00	
	Seldom-used units	0.000	0.000	0.000	0.00	0.00E+00	0.00	
OSR vess	sel							
	Propulsion & Generation	5.434	0.226	0.226	1.64	2.06E-02	0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.024	0.110	0.129	2.36		0.00	
	Model ID: OSR_MAIN; OSR Vessel AREAPOLY ^{1,3}	1.37E-06	8.49E-08	8.96E-08	1.00E-06	1.01E-08	0.00E+00	
OSR wor		1.571-00	5.172-00	3.702-00	1.002-00	1.012-00	0.001100	
USIX WOI	Work boats	1.313	0.105	0.105	0.35	3.98E-03	0.00	
	<i>Model ID: OSR_WORK; OSR Work Boats AREAPOLY</i> ^{1,3}							
		3.29E-07	2.63E-08	2.63E-08	8.86E-08	9.95E-10	0.00E+00	=
	¹ AREAPOLY units = $g/s/m^2$							
	2 Ice Mngt/AH divide by area of the AREAPOLY =	8,718,385	sq. meters					
	³ OSR divide by area of the AREAPOLY =	3,997,350						

blue values are input, black values are calculated or linked

A	Ain Soionaaa Ina	PROJECT TITLE:				BY:		
<u>A</u>	Air Sciences Inc.	Shell OCS Permit				S. Pryor		
CIENCES INC.		PROJECT NO		20. 6			OF:	SHEET
	ENGINEERING CALCULATIONS	CUDIECT.	180-	20-6		2	4	3
Y 1 X + 70 813 XX0	ENGINEERING CALCULATIONS	SUBJECT: M	Iodel Emiss	ion Summar	v	DATE:	pril 28, 2011	
		10.	Iouer Emiss.	ion Summa	y	А	pm 20, 2011	
nical Drilling U	Unit Kulluk OCS Source - Daily Maximum Emissions for	each source	group					
Drill Cas	·							
		NO	DM	DM	60	50	NU	=
	STACK	NO _X g/s	PM _{2.5}	PM ₁₀	CO g/s	SO ₂	NH ₃	
Kulluk	STACK	g/s	g/s	g/s	g/s	g/s	g/s	=
Kulluk	MAINENGS	2.395	0.374	0.374	1.08	6.80E-02	0.09	
	MLCHPU_A	0.000	0.000	0.000	0.00		0.00	
	MLCHPU_B	0.000	0.000	0.000	0.00		0.00	
	AIRCMP_A	0.000	0.000	0.000	0.00		0.00	
	—							
	AIRCMP_B	0.000	0.000	0.000	0.00		0.00	
	CRANE_A	0.149	0.006	0.006	0.01	4.52E-04	0.00	
	CRANE_B	0.149	0.006	0.006	0.01	4.52E-04	0.00	
	CRANE_C	0.149	0.006	0.006	0.01	4.52E-04	0.00	
	HEATBOIL	0.115	0.019	0.019	0.03	8.06E-03	0.00	
	INCIN_K	0.052	0.243	0.285	5.22	0.04	0.00	
	SELDOML (no egen.)	0.046	0.004	0.004	0.01	1.39E-04	0.00	
	SELDOMH (egen.)	2.242	0.179	0.179	0.60		0.00	
Primary I	Ice Management							
	Propulsion & Generation	10.672	1.667	1.667	4.83		0.20	
	Heaters & Boilers	0.192	0.032	0.032	0.05	1.34E-02	0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
Seconder	y Ice Management / Anchor Handler							
Secondar	Propulsion & Generation	10.672	1.667	1.667	4.83	3.03E-01	0.20	
	Heaters & Boilers	0.192	0.032	0.032	0.05	1.34E-02	0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
	Model ID: ICEMGMT; ICE MGMT/AH AREAPOLY ^{1,2}	2.51E-06	4.22E-07	4.27E-07	1.79E-06	7.82E-08	4.63E-08	
Resupply	Ship - DP mode							
resuppij	Propulsion & Generation	9.316	0.388	0.388	2.81	3.53E-02	0.00	
	Seldom-used units	0.007	0.001	0.001	0.00	2.10E-02	0.00	
D	Model ID: RESUP_DP	9.32	0.39	0.39	2.81	0.04	0.00	
Resupply	Ship - transport mode	0.00-	0.00-	o o o -		0.007.01	0.55	
	Propulsion & Generation	0.000	0.000	0.000	0.00		0.00	
	Seldom-used units	0.000	0.000	0.000	0.00	0.00E+00	0.00	
OSR vess	sel							
	Propulsion & Generation	5.434	0.226	0.226	1.64	2.06E-02	0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.033	0.003	0.129	2.36		0.00	
	Model ID: OSR_MAIN; OSR Vessel AREAPOLY ^{1,3}	1.37E-06	8.49E-08	8.96E-08	1.00E-06	1.01E-08	0.00E + 00	
OSR wor								
	Work boats	1.313	0.105	0.105	0.35	3.98E-03	0.00	
_	Model ID: OSR_WORK; OSR Work Boats AREAPOLY ^{1,3}	3.29E-07	2.63E-08	2.63E-08	8.86E-08	9.95E-10	0.00E+00	_
								=
	¹ AREAPOLY units = $g/s/m^2$							
	AREAPOLY units = $g/s/m$ ² Ice Mngt/AH divide by area of the AREAPOLY =	8,718,385	sa, meters					

A		PROJECT TITLE:				BY:		
A	Air Sciences Inc.		Shell OC	CS Permit			S. Pryor	1
SCIENCES INC.		PROJECT NO		20. 6		PAGE:	OF:	SHEET
	ENCINEEDING CALCULATIONS	CUD IE CT	180-	20-6		3	4	3
NY1X - 70811XND	ENGINEERING CALCULATIONS	SUBJECT:	Iodel Emiss	ion Summar	-	DATE:	pril 28, 2011	
		IV	Iouer Emiss	ion Summa	y	A	pm 28, 2011	
0	Unit Kulluk OCS Source - Daily Maximum Emissions for	each source	group					
Cementir	ng/Logging Case							
		NO _X	PM _{2.5}	PM ₁₀	СО	SO ₂	NH ₃	=
	STACK	g/s	g/s	g/s	g/s	g/s	g/s	-
Kulluk								_
	MAINENGS	1.690	0.264	0.264	0.76		0.09	
	MLCHPU_A	0.000	0.000	0.000	0.00		0.00	
	MLCHPU_B	0.000	0.000	0.000	0.00		0.00	1
	AIRCMP_A	0.000	0.000	0.000	0.00	0.00E+00	0.00	l.
	AIRCMP_B	0.000	0.000	0.000	0.00	0.00E+00	0.00	
	CRANE_A	0.249	0.010	0.010	0.01		0.00	
	CRANE_B	0.249	0.010	0.010	0.01		0.00	
	CRANE_C	0.249	0.010	0.010	0.01		0.00	
	HEATBOIL	0.115	0.019	0.019	0.01		0.00	
	INCIN K	0.052	0.243	0.285	5.22		0.00	
		0.032	0.243	0.285	0.01		0.00	
	SELDOML (no egen.)							
	SELDOMH (egen.)	2.242	0.179	0.179	0.60	6.79E-03	0.00	
Primary I	ce Management							
	Propulsion & Generation	10.672	1.667	1.667	4.83	3.03E-01	0.20	1
	Heaters & Boilers	0.192	0.032	0.032	0.05	1.34E-02	0.00	1
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
Secondar	y Ice Management / Anchor Handler							
Becondar	Propulsion & Generation	10.672	1.667	1.667	4.83	3.03E-01	0.20	
	Heaters & Boilers	0.192	0.032	0.032	0.05		0.20	
	Seldom-used units	0.035	0.003	0.003	0.01		0.00	
	Incinerator	0.029	0.136	0.159	2.91	0.02	0.00	
	Model ID: ICEMGMT; ICE MGMT/AH AREAPOLY ^{1,2}	2.51E-06	4.22E-07	4.27E-07	1.79E-06	7.82E-08	4.63E-08	
Resupply	Ship - DP mode							
	Propulsion & Generation	9.316	0.388	0.388	2.81	3.53E-02	0.00	
	Seldom-used units	0.007	0.001	0.001	0.00	2.10E-05	0.00	
	Model ID: RESUP_DP	9.32	0.39	0.39	2.81	0.04	0.00	
Resupply	Ship - transport mode							
	Propulsion & Generation	0.000	0.000	0.000	0.00	0.00E+00	0.00	
	Seldom-used units	0.000	0.000	0.000	0.00		0.00	
OSR vess	al							
0.510 1688		5 121	0.226	0.226	1 64	2.065.02	0.00	
	Propulsion & Generation	5.434	0.226	0.226	1.64		0.00	
	Seldom-used units	0.035	0.003	0.003	0.01	1.05E-04	0.00	
	Incinerator	0.024	0.110	0.129	2.36	0.02	0.00	
	Model ID: OSR_MAIN; OSR Vessel AREAPOLY ^{1,3}	1.37E-06	8.49E-08	8.96E-08	1.00E-06	1.01E-08	0.00E + 00	
OSR worl	k boats							
	Work boats	1.313	0.105	0.105	0.35	3.98E-03	0.00	
	Model ID: OSR_WORK; OSR Work Boats AREAPOLY ^{1,3}	3.29E-07	2.63E-08	2.63E-08	8.86E-08		0.00E+00	
	$^{-1}$ AREAPOLY units = g/s/m ²							=
	2 Ice Mngt/AH divide by area of the AREAPOLY =	0 510 205						
	3 OSR divide by area of the AREAPOLY =	8,718,385 3,997,350	•					

A		PROJECT TI	TLE:	BY:	BY:		
2	Air Sciences Inc.		Shell OCS Permit		S. Pryor		
ENCES INC.		PROJECT NO	0:	PAGE:	OF:	SHEF	
ENCES INC.			180-20-6	4	4	3	
1 × 10 × 10 × 10	ENGINEERING CALCULATIONS	SUBJECT:	()) F () ()	DATE:			
		N	Model Emission Summary		April 28, 20)11	
al Drilling U	Init Kulluk OCS Source - Daily Maximum Emissions fo	r each source	group				
Maximun	n						
		CO	NH ₃				
	STACK	g/s	g/s				
Kulluk	MADIENICO	1.00	0.00				
	MAINENGS MLCHPU_A	1.08 0.13	0.09 0.00				
	MLCHPU_B	0.13	0.00				
	AIRCMP_A	0.13	0.00				
	AIRCMP_B	0.11	0.00				
	CRANE_A	0.01	0.00				
	CRANE_B	0.01	0.00				
	CRANE_C	0.01	0.00				
	HEATBOIL	0.03	0.00				
	INCIN_K	5.22	0.00				
	SELDOML (no egen.)	0.0123	0.00				
	SELDOME (no egen.)	0.6045	0.00				
		010010	0100				
Primary Ic	ce Management						
	Propulsion & Generation	4.83	0.20				
	Heaters & Boilers	0.05	0.00				
	Seldom-used units	0.01	0.00				
	Incinerator	2.91	0.00				
Secondary	/ Ice Management / Anchor Handler						
Secondary	Propulsion & Generation	4.83	0.20				
	Heaters & Boilers	0.05	0.00				
	Seldom-used units	0.01	0.00				
	Incinerator	2.91	0.00				
	Model ID: ICEMGMT; ICE MGMT/AH AREAPOLY ^{1, 2}	1.79E-06	4.63E-08				
Documply	Ship - DP mode						
resuppry	Propulsion & Generation	2.81	0.00				
	Seldom-used units	0.00	0.00				
	Model ID: RESUP_DP	2.81	0.00				
Resupply	Ship - transport mode	2.01					
	Propulsion & Generation	0.00	0.00				
	Seldom-used units	0.00	0.00				
OSR vess	al						
OSI VESS	Propulsion & Generation	1.64	0.00				
	Seldom-used units	0.01	0.00				
	Incinerator	2.36	0.00				
	Model ID: OSR_MAIN; OSR Vessel AREAPOLY ^{1,3}						
OCD 1		1.00E-06	0.00E + 00				
OSR work		0.25	0.00				
	Work boats Model ID: OSR_WORK; OSR Work Boats AREAPOLY ^{1.}	0.35 3 8.86E-08	0.00				
		8.80E-08	0.00E+00				
	¹ AREAPOLY units = $g/s/m^2$						
	2 Ice Mngt/AH divide by area of the AREAPOLY =	8,718,385					
	³ OSR divide by area of the AREAPOLY =	3,997,350	sq. meters				

ATTACHMENT B Nearby Sources/Cumulative Impacts Analysis

Kulluk Permit Application: Nearby Sources/Cumulative Impacts

The purpose of this document is to address the potential cumulative air quality impacts of Shell's proposed Kulluk minor source application¹ (February 28, 2011) when combined with the impacts from on-shore sources. The modeling analysis in the Kulluk Application added regional background concentrations for each pollutant to the potential Kulluk model concentrations, and these combined concentrations were then compared with ambient air quality standards. The regional background concentrations were based on measured data at onshore locations and included the contribution from existing regional sources in the area. However, it could be necessary to explicitly model certain regional sources if they are close enough in location to the proposed Shell operation to cause greater overlapping impact than the monitored data suggest. Therefore, in addition to the analysis done as part of the February 28 Application, in this document Shell determines whether any regional sources need to be explicitly modeled. In addition, Shell has analyzed ambient background data from the Prudhoe Bay area for NO₂, PM_{2.5}, and PM₁₀ to address the cumulative impacts for the Kulluk. As used here, the term "Prudhoe Bay area" refers to the entire oil and gas development area surrounding Prudhoe Bay itself and includes outlying areas such as the Deadhorse airport area and the A-Pad location.

Nitrogen Dioxide (NO2)

EPA's March 1, 2011 memo on 1-hour NO2 modeling provides guidance on identifying nearby sources to be included in the modeled inventory for 1-hour NO2 assessments and emphasizes the importance of professional judgment in determining whether including regional competing sources is necessary in a full impact analysis:

As noted in the July 29, 2010 memo, Section 8.2.3 of Appendix W emphasizes the importance of professional judgment by the reviewing authority in the identification of nearby and other sources to be included in the modeled emission inventory, and establishes "a significant concentration gradient in the vicinity of the source" under consideration as the main criterion for this selection. Appendix W also suggests that "the number of such [nearby] sources is expected to be small except in unusual situations." See Section 8.2.3.b. In light of this guidance, the June 29, 2010 memo cautioned against the literal and uncritical application of very prescriptive procedures for identifying which background sources should be included in the modeled emission inventory for NAAQS compliance demonstrations, such as those described in Chapter C, Section IV.C.1 of the draft New Source Review Workshop Manual (EPA, 1990).....Our main concern is that following such procedures in a literal and uncritical manner may in many cases result in cumulative impact assessments that are overly conservative and could unnecessarily complicate the permitting process in some cases.

Memo from T. Fox, EPA Air Quality Modeling Group, to Regional Air Division Directors, Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO2 National Ambient Air Quality Standard, March 1, 2011, pp. 12-13.

¹ Supplement to EPA Outer Continental Shelf (OCS) Operating Permit Application. Shell Beaufort Sea. Alaska Exploratory Drilling Program: Conical Drilling Unit Kulluk. Air Sciences, Inc. Project 180-20-3, February 28, 2011.

The March 1, 2011 memo emphasizes that the full impact analysis is case-by-case in nature and that factors such as terrain, meteorology, and the impact pattern of the source itself be considered when evaluating the need for a cumulative impact assessment. As mentioned above and in the Guideline on Air Quality Modeling (40 CFR 51, Appendix W), EPA considers whether a regional source causes "a significant concentration gradient in the vicinity of the source" under consideration (i.e., the Kulluk) as the main criterion for determining if a regional source should be included in a full impact analysis. Given the issues and challenges arising from implementing the new 1-hour NO2 standard, EPA offers additional explanation in the March 1, 2011 memo regarding what the Appendix W Guideline means and how it should be applied. For instance, in discussing terrain influences on the location and gradients of maximum 1-hour concentrations, EPA states:

Even accounting for some terrain influences on the location and gradients of maximum 1-hour concentrations, these considerations suggest that <u>the emphasis on determining which nearby</u> <u>sources to include in the modeling analysis should focus on the area within about 10 kilometers</u> <u>of the project location in most cases</u>. The routine inclusion of all sources within 50 kilometers of <u>the project location</u>, the nominal distance for which AERMOD is applicable, is likely to produce an <u>overly conservative result in most cases</u>.

EPA March 1, 2011 memo, p. 16 (emphasis added). The Beaufort Sea setting for the Kulluk and its associated fleet is remote and generally far from any other sources of emissions. However, given that the Prudhoe Bay area has many sources of emissions, and is located on the shores of the Beaufort Sea, further investigation was warranted.

As noted, the March 2011 memo introduces the concept of significant concentration gradients, and suggests that in most cases, distances of 10 kilometers (10,000 meters) are sufficient to effectively evaluate the significant concentration gradients that are seen in areas close to a source. This gradient issue is illustrated by Figure 1, showing the change in concentration with downwind distance for the Kulluk itself and its associated fleet. As the figure shows at distances of 7,000 to 10,000 meters downwind of the Kulluk, concentrations level off and change less rapidly from point to point. The guidance suggests that explicit modeling of regional sources is only necessary for sources that have significant concentration gradients in the vicinity of the Kulluk and its associated fleet. Due to the literally hundreds of sources in the Prudhoe Bay area, we have not modeled the specific concentration distance between the Kulluk and any regional source that could reasonably be expected in all cases to be sufficient to escape the significant concentration gradients. To be conservative, this screening analysis is based on the separation distance needed for the largest emission source in the Prudhoe Bay area, the BP Central Compressor Plant (CCP).

Figure 1. Concentration Gradient Illustration

This does not mean that a distant source and the Kulluk could not have an overlapping impact. Rather, it suggests that this overlapping impact can be addressed using available monitoring data and incorporated in the background concentration, rather than by explicitly modeling the distant source. Conversely, if the regional source is close to the Kulluk, it might be expected to have concentrations at the Kulluk location that vary greatly depending on exactly how close the source is to the Kulluk. In that event, it might be necessary to explicitly model the regional source, rather than relying on monitoring data that might not be located as close to the regional source as the Kulluk could be.

EPA has suggested that Shell consider the distance between ambient monitoring locations in Prudhoe Bay from the largest emission sources in Prudhoe Bay.² It is thought that if these monitoring locations are far enough away to be sampling background air quality, the samplers must be out of the region of significant concentration gradient. The largest source of NO_x emissions in the Prudhoe Bay area is the BP Central Compressor Plant (CCP). As shown in the January 2010 Discoverer permit application, the BP CPP emits over 14,000 tons per year of NO_x. This is more than 40 times as much NO_x as will be emitted by the Kulluk and associated fleet. The ambient monitor used to characterize background

² April 14, 2011 email from Doug Hardesty, EPA Region 10, to Pauline Ruddy, Shell, and subsequent conversations with EPA modeling personnel.

concentrations for this facility is the A-PAD NO_x monitor. The distance between the A-PAD monitor and the CPP is 11.5 kilometers (11,500 meters). Figure 2 illustrates the location of the A-PAD monitor with respect to the CCP Main Pad.

Figure 2. Location of the Air Quality Monitoring Stations and the CCP Main Pad

Because the CCP facility is by far the largest emitter in the Prudhoe Bay area, the distance from A-PAD to CCP of 11,500 meters is considered sufficient to escape the significant concentration gradient for any of the sources in Prudhoe Bay. Shell therefore proposes to use this 11,500 meter distance as a basis for determining which emission sources should be modeled explicitly, and which could be addressed through available monitoring data.

Figure 3 is a plot of the Shell Beaufort Sea Leases with respect to other sources of emissions. A circle of 11,500 meters is drawn around each regional source of emissions, showing that none of the sources are within 11,500 meters of any of Shell's proposed operation leases for the Kulluk.

Figure 3. 11,500 meter Radii from Existing Sources Shown with Proposed Shell lease Blocks

Because of the remote offshore location of the Shell leases and the lack of any significant nearby sources and because the nearest shored-based sources are already accounted for in the A-PAD background measurements, only impacts from the Kulluk and its associated fleet are explicitly modeled in the full impact analysis in Section 3 of Shell's February 28, 2011 application. This conclusion is consistent with the analysis presented in this paper, as well as EPA's March 1, 2011 guidance that recommends considering only regional sources generally located within 10 kilometers of the source (i.e., the Kulluk) in a full NO₂ impact analysis.

It should be noted that the analysis in the February Kulluk application used the Badami monitoring data to characterize background concentrations for NO_2 . This analysis is presently being revised and submitted to EPA under separate cover using the A-PAD data to be consistent with this cumulative impact analysis.

Particulate Matter (PM10 and PM2.5)

Particulate matter is quantified both as particulate matter smaller than 10 micrometers in mass-mean diameter (PM10) and particulate matter smaller than 2.5 micrometers in mass-mean diameter (PM2.5). In general PM10 is not as significant an issue for the Shell emission sources as is NO₂ above. This results from two factors: 1) Shell's emissions of PM10 are far less than its emissions of NOx (compare 11,061 pounds per day of NOx with only 1,052 pounds per day of PM10), and 2) the PM10 standard is for 24-hour average concentrations, compared with the much more stringent 1-hour concentration for NO₂ even though the magnitude of the ambient standards are very similar in value (188 μ g/m³ for NO₂ and 150 μ g/m³ for PM10). Ambient PM10 data are available at the CCP site, directly downwind from the CCP facility and much closer than the A-PAD data used above. The same analysis as presented above for NO2 applies to PM10. The impacts of the regional sources of PM10 are included in the analysis without the need for explicit modeling as long as the CCP site PM10 data are used to characterize the background. These data were used for background PM10 in the February 28, 2011 Kulluk application.

The other metric measure used for particulate matter, PM2.5, results in the same conclusion, but needs further explanation. Like PM10, the emissions of PM2.5 are 10 times smaller than the emissions of NOx,

and the ambient standard is a 24-hour standard. However, the ambient standard for PM2.5 is only 35 μ g/m³, much smaller than the 1-hour NO2 standard. There is no ambient monitor for PM2.5 at either the A-PAD or the CCP monitor. The Badami monitor was established by Shell and was used in the application to characterize background PM2.5 concentrations, but Badami is considerably further from Prudhoe Bay.

Shell established a PM2.5 monitor at Deadhorse in the Prudhoe Bay area. The Deadhorse monitor collects the only PM2.5 data in Prudhoe Bay at present. The distance between the CCP facility, the largest source of emissions in Prudhoe Bay, and the Deadhorse monitor is 11,300 meters (see Figure 2 above), almost the same as the A-PAD data. Accordingly, it has been assumed here that the 11,500 meter distance can again be used to define sources that need explicit modeling for PM2.5. Following this analysis, no explicit modeling is required for any source of PM2.5 other than the Kulluk and its associated fleet, as long as Deadhorse data are used as background. The air quality impact analysis is presently being revised to use the Deadhorse data for background concentrations. It will be provided to EPA under separate cover.

Other Pollutants (SO2, CO)

The impact of the Kulluk emission sources is less than the Significant Impact Level for all other pollutants at distances greater than 11,000 meters. Accordingly, no cumulative impact analysis is needed for these pollutants.

ATTACHMENT C Deadhorse PM_{2.5} Measured Concentrations Used in Analysis

	$24\text{-Hour}\ PM_{2.5}$	Precipitation	Precipitation	Hour Per Day
	Concentration	Day of	Previous Day	With Winds
Date	$(\mu g/m^3)$	(inches)	(inches)	> 10 m/sec
07/01/10	4	0	0	0
07/02/10	5	0	0	0
07/03/10	5	0	0	0
07/04/10	4	0	0	0
07/05/10	20	0	0	0
07/06/10	0	0.08	0	0
07/07/10	2	0	0.08	1
07/08/10	15	0.03	0	2
07/09/10	17	0	0.03	0
07/10/10	1	0	0	1
07/11/10	0	0	0	0
07/12/10	1	0.02	0	0
07/13/10	1	0	0.02	0
07/14/10	1	0.01	0	0
07/15/10	2	0	0.01	0
07/16/10	3	0	0	0
07/17/10	0	0.08	0	0
07/18/10	0	0.11	0.08	0
07/19/10	0	0.08	0.11	0
07/20/10	0	0.08	0.08	0
07/21/10	0	0	0.08	0
07/22/10	0	0	0	0
07/23/10	0	0.03	0	0
07/24/10	0	0	0.03	0
07/25/10	1	0	0	0
07/26/10	2	0	0	0
07/27/10	2	0	0	0
07/28/10	1	0	0	0
07/29/10	0	0	0	0
07/30/10	0	0.01	0	0
07/31/10	8	0	0.01	1
08/01/10	11	0	0	0
08/02/10	41	0	0	10
08/03/10	7	0	0	0
08/04/10	2	0	0	0
08/05/10	3	0	0	0
08/06/10	1	0	0	0
08/07/10	2	0.11	0	7
08/08/10	3	0	0.11	16
08/09/10	2	0	0	16

Deadhorse PM_{2.5} Measured Concentrations Used in Analysis

	$24\text{-Hour}\ \mathrm{PM}_{2.5}$	Precipitation	Precipitation	Hour Per Day
	Concentration	Day of	Previous Day	With Winds
Date	(µg/m³)	(inches)	(inches)	> 10 m/sec
08/10/10	0	0	0	0
08/11/10	0	0.01	0	0
08/12/10	0	0	0.01	0
08/13/10	1	0.03	0	0
08/14/10	1	0.06	0.03	0
08/15/10	3	0	0.06	0
08/16/10	1	0.01	0	0
08/17/10	7	0	0.01	0
08/18/10	1	0	0	0
08/19/10	0	0.01	0	0
08/20/10	1	0	0.01	0
08/21/10	0	0	0	0
08/22/10	0	0.01	0	0
08/23/10	2	0	0.01	0
08/24/10	2	0	0	0
08/25/10	0	0	0	2
08/26/10	0	0	0	7
08/27/10	0	0	0	0
08/28/10	0	0	0	0
08/29/10	0	0	0	0
08/30/10	0	0	0	0
08/31/10	0	0.01	0	0
09/01/10	0	0	0.01	0
09/02/10	0	0	0	0
09/03/10	0	0.01	0	5
09/04/10	0	0	0.01	0
09/05/10	0	0	0	0
09/06/10	2	0	0	0
09/07/10	0	0	0	0
09/08/10	0	0	0	0
09/09/10	0	0.01	0	0
09/10/10	1	0.01	0.01	0
09/11/10	0	0	0.01	0
09/12/10	8	0	0	0
09/13/10	2	0	0	0
09/14/10	1	0	0	0
09/15/10	2	0	0	0
09/16/10	5	0	0	0
09/17/10	1	0.04	0	0
09/18/10	0	0	0.04	0

Deadhorse PM_{2.5} Measured Concentrations Used in Analysis (cont'd)

	24-Hour PM _{2.5}	Precipitation	Precipitation	Hour Per Day
	Concentration	Day of	Previous Day	With Winds
Date	(µg/m³)	(inches)	(inches)	> 10 m/sec
09/19/10	1	0	0	0
09/20/10	4	0	0	0
09/21/10	3	0	0	0
09/22/10	3	0	0	0
09/23/10	2	0	0	0
09/24/10	1	0	0	0
09/25/10	0	0	0	0
09/26/10	2	0.02	0	0
09/27/10	1	0.01	0.02	0
09/28/10	1	0	0.01	4
09/29/10	1	0	0	4
09/30/10	4	0	0	0
10/01/10	5	0	0	1
10/02/10	12	0	0	17
10/03/10	1	0.01	0	10
10/04/10	3	0	0.01	15
10/05/10	2	0	0	1
10/06/10	3	0	0	0
10/07/10	4	0	0	0
10/08/10	2	0	0	0
10/09/10	2	0	0	0
10/10/10	3	0	0	0
10/11/10	3	0	0	0
10/12/10	3	0	0	0
10/13/10	2	0.03	0	0
10/14/10	3	0	0.03	2
10/15/10	2	0	0	0
10/16/10	3	0	0	7
10/17/10	INVALID	0	0	24
10/18/10	INVALID	0	0	24
10/19/10	3	0.03	0	7
10/20/10	3	0.01	0.03	0
10/21/10	1	0	0.01	13
10/22/10	1	0	0	17
10/23/10	3	0	0	23
10/24/10	3	0	0	1
10/25/10	2	0.01	0	0
10/26/10	3	0.01	0.01	0
10/27/10	1	0	0.01	0
10/28/10	2	0	0	0

Deadhorse PM_{2.5} Measured Concentrations Used in Analysis (cont'd)

	24-Hour PM _{2.5}	Precipitation	Precipitation	Hour Per Day
	Concentration	Day of	Previous Day	With Winds
Date	(µg/m³)	(inches)	(inches)	> 10 m/sec
10/29/10	0	0	0	0
10/30/10	0	0.01	0	0
10/31/10	2	0	0.01	0
11/01/10	0	0	0	0
11/02/10	4	0	0	0
11/03/10	3	0	0	8
11/04/10	19	0	0	19
11/05/10	5	0	0	0
11/06/10	17	0	0	0
11/07/10	6	0	0	0
11/08/10	2	0	0	0
11/09/10	0	0	0	0
11/10/10	3	0	0	2
11/11/10	0	0	0	0
11/12/10	0	0	0	0
11/13/10	0	0	0	0
11/14/10	4	0	0	0
11/15/10	4	0	0	13
11/16/10	6	0	0	13
11/17/10	INVALID	0	0	22
11/18/10	4	0	0	10
11/19/10	4	0	0	0
11/20/10	0	0.01	0	6
11/21/10	2	0.01	0.01	4
11/22/10	2	0	0.01	0
11/23/10	0	0.06	0	0
11/24/10	1	0.05	0.06	1
11/25/10	6	0	0.05	0
11/26/10	5	0.01	0	0
11/27/10	2	0	0.01	0
11/28/10	5	0	0	0
11/29/10	6	0	0	0
11/30/10	5	0	0	0

Deadhorse PM_{2.5} Measured Concentrations Used in Analysis (cont'd)